Home >Backend Development >Golang >How to implement Snowflake algorithm in Golang
Snowflake is a distributed ID generation algorithm open sourced by Twitter. It uses the following method to generate a globally unique ID:
In this article, we will introduce how to implement Snowflake in Golang.
First, we need to define a structure to save the data in the Snowflake algorithm, including machine ID, serial number and the last generated ID timestamp and other information.
const ( workerIdBits = 10 // 机器ID位数 sequenceBits = 12 // 序列号位数 workerIdMax = -1 ^ (-1 << workerIdBits) // 最大机器ID sequenceMask = -1 ^ (-1 << sequenceBits) // 序列号掩码 timeShiftBits = workerIdBits + sequenceBits // 时间戳左移位数 workerIdShift = sequenceBits // 机器ID左移位数 ) type Snowflake struct { lastTimestamp uint64 workerId uint16 sequence uint16 }
Among them, we use constants to represent the number of digits of each data, maximum value, mask and other information to facilitate subsequent calculations.
Next, we need to implement a method to generate a globally unique ID. The specific process is as follows:
The specific implementation is as follows:
func (s *Snowflake) NextId() uint64 { var currTimestamp = uint64(time.Now().UnixNano() / 1e6) if currTimestamp < s.lastTimestamp { panic("Invalid timestamp") } if currTimestamp == s.lastTimestamp { s.sequence = (s.sequence + 1) & sequenceMask if s.sequence == 0 { currTimestamp = s.waitNextMillis(currTimestamp) } } else { s.sequence = 0 } s.lastTimestamp = currTimestamp return ((currTimestamp - 1483228800000) << timeShiftBits) | (uint64(s.workerId) << workerIdShift) | uint64(s.sequence) } func (s *Snowflake) waitNextMillis(currTimestamp uint64) uint64 { for currTimestamp <= s.lastTimestamp { currTimestamp = uint64(time.Now().UnixNano() / 1e6) } return currTimestamp }
In the implementation, we use UNIX timestamp to represent time, but since the time when the Snowflake algorithm generates IDs starts in 2017, we need Subtract the fixed offset value (1483228800000) from the timestamp.
Finally, we need to initialize a Snowflake object and specify the machine ID. The machine ID should be an integer between 0 and 1023, and the IDs of different machines are guaranteed to be different.
func New(workerId int) *Snowflake { if workerId < 0 || workerId > workerIdMax { panic(fmt.Sprintf("Invalid worker ID, must be in [%d, %d]", 0, workerIdMax)) } return &Snowflake{ lastTimestamp: 0, workerId: uint16(workerId), sequence: 0, } }
In the above implementation, we used the timestamp function and binary operator in Golang to ensure the uniqueness and continuity of the ID, and the low-order sequence number ensures the trend of the ID increasing. Since timestamps are accurate to the millisecond level, the Snowflake algorithm can generate enough IDs to avoid ID conflicts in high-concurrency scenarios.
The above is the detailed content of How to implement Snowflake algorithm in Golang. For more information, please follow other related articles on the PHP Chinese website!