


Data is now one of the most valuable enterprise commodities. According to CIO.com's "State of the CIO 2022" report, 35% of IT leaders said that data and business analytics will account for the largest share of their organization's IT investments this year, and 58% of respondents said that in the next year They will increase their investment in data analysis.
While data comes in many forms, perhaps the largest, untapped data pool is text, whether it’s patents, product specifications, academic publications, market research, news, or social feeds. Text-based, and the number of texts is constantly growing. According to Foundry's 2022 Data and Analytics Study, 36% of IT leaders believe that managing this unstructured data is one of the biggest challenges they face. That’s why research firm Lux Research points out that natural language processing (NLP) technology—especially topic modeling—is becoming a key tool for unlocking the value of data.
Natural language processing is a branch of artificial intelligence (AI) used to train computers to understand, process and generate language. Search engines, machine translation services, and voice assistants are all powered by natural language processing. Topic modeling is a natural language processing technique that breaks down an idea into subcategories of common concepts defined by phrases. According to Lux Research, topic modeling allows organizations to associate documents with specific topics and then extract data, such as growth trends in a topic over time. Topic modeling can also be used to establish a "fingerprint" for a given document and then discover other documents with similar fingerprints.
As enterprises become increasingly interested in AI, they are turning to natural language processing to unlock the value of unstructured data contained in text documents. Research firm MarketsandMarkets predicts that the natural language processing market will grow from US$15.7 billion in 2022 to US$49.4 billion in 2027, with a compound annual growth rate (CAGR) of 25.7% during this period.
Let’s take a look at five examples of how organizations are using natural language processing to create business results.
Eli Lilly: Doing business globally through natural language processing
Multinational pharmaceutical company Eli Lilly is using natural language processing to help more than 30,000 employees around the world communicate within the company and Share accurate, timely information externally. Lilly has developed a homegrown IT solution called Lilly Translate that uses natural language processing and deep learning to generate content translations through a proven API layer.
For years, Eli Lilly relied on third-party human translation vendors to translate everything from internal training materials to formal technical exchanges with regulators. Now, Lilly Translate service provides users and systems with real-time translation of Word, Excel, PowerPoint and text, while keeping the document format unchanged. Eli Lilly uses deep learning language models trained on life sciences and Lilly content to help improve translation accuracy, creating refined language models that recognize Lilly-specific terminology and industry-specific technical language while maintaining the format of regulated documents.
Timothy F. Coleman, vice president, information and digital solutions officer, Lilly, said: “Lilly Translate touches every area of the company, from human resources to corporate audit services to the ethics and compliance hotline, Finance, Sales and Marketing, Regulatory Affairs, and many other areas. This saves a huge amount of time, as translation now takes seconds instead of weeks, freeing up key resources to focus on other important tasks. Business activities.”
Coleman’s advice: Support projects that are driven by passion. Lilly Translate began as a passion project by a curious software engineer whose idea was to solve a pain point in the Lilly Regulatory Affairs system portfolio: business partners were constantly experiencing delays and friction in their translation services. Coleman shared the idea and technical vision with other executives and managers and immediately gained project support from Eli Lilly's global regulatory affairs international leadership, who advocated for investment in the tool.
"[The idea] was a great combination of the opportunity to explore and learn about emerging technologies, and what started out as a great learning opportunity has now become one that Lilly software engineers grab and run." Great project opportunity.”
Accenture: Using natural language processing to analyze contracts
Accenture is using natural language processing for legal analysis. Accenture's Legal Intelligent Contract Exploration (ALICE) project helps this global services company with 2,800 professionals conduct text searches in its millions of contracts, including searching for contract terms.
ALICE uses "word embedding", a natural language processing method, which can help compare words based on semantic similarity. The model examines contract documents paragraph by paragraph, looking for keywords to determine whether the paragraph is relevant to a specific contract clause type. For example, words like "flood," "earthquake," or "disaster" often appear with a "force majeure" clause.
Mike Maresca, global managing director for digital business transformation, operations and enterprise analytics at Accenture, said: “As we continue to leverage this capability and continue to enhance it, its use continues to expand and we see additional value. opportunities, and we're looking for new ways to get value from existing data."
Accenture said the project significantly reduces the time lawyers spend manually reading documents to obtain specific information.
Maresca’s advice: Don’t be afraid to delve deeper into natural language processing. “If innovation is part of the culture, you can’t be afraid of failure and let’s experiment and iterate.”
Verizon: Using natural language processing to respond to customer requests
Verizon’s business Service assurance departments are using natural language processing and deep learning to automatically process customer request reviews. The department receives more than 100,000 inbound requests each month, and previously they had to read and take action until Verizon's IT arm—Global Technology Solutions (GTS)—built the AI-Enabled Digital Worker for Service Assurance.
This Digital Worker combines web-based deep learning technology with natural language processing to read repair orders sent primarily via email and the Verizon portal. It automatically responds to the most common requests, such as reports. The current work order status or repair progress is updated, and more complex issues are submitted to human engineers.
"By automating responses to these requests, we can respond within minutes instead of hours after the email is sent," said Stefan Toth, executive director of systems engineering, Global Technology Solutions (GTS), Verizon Business Group explain.
In February 2020, Verizon stated that Digital Worker had saved nearly 10,000 man-hours per month since the second quarter of last year.
Toth’s advice: seek open source. "Look around, network with your business partners, and I'm sure you'll find opportunities. Think about open source and experiment before making a large financial commitment. We found that there is a lot of open source software available now."
Great Wolf Lodge: Using natural language processing-driven AI to track guest sentiment
Artificial Intelligence Lexicographer (GAIL) developed by hospital and entertainment chain Great Wolf Lodge sifts through comments in monthly surveys to determine Whether the author may be a troll, a critic, or a neutral party.
This AI tool utilizes natural language processing and was trained on more than 67,000 reviews specifically for the service industry. GAIL runs in the cloud and uses an in-house developed algorithm to discover the key factors that indicate how respondents feel about Great Wolf Lodge. Great Wolf Lodge stated that as of September 2019, GAIL's accuracy can reach 95%. For a small part of the information that GAIL cannot understand, Great Wolf Lodge will use traditional text analysis to process it.
Great Wolf Lodge Chief Information Officer Edward Malinowski said: "We want to be better able to interact with guests in every aspect."
Great Wolf Lodge's business operations team uses GAIL-generated Insights to adjust their service, the company is currently developing a chatbot to answer guests' frequently asked questions about Great Wolf Lodge service.
Malinowski’s advice: Avoid technology for technology’s sake. Choose tools that strike the right balance between technology and practicality and are aligned with business goals. "You have to be careful about what's a gimmick and what's a real solution to a problem." Provider Contracts app that automatically reads notes on each contract regarding payment, deductibles, and unrelated expense instructions, then calculates pricing and updates claims.
The application blends natural language processing and special database software to identify payment attributes and build additional data that can be automatically read by the system. As a result, many claims are settled overnight.
The app allows Aetna's more than 50 claims adjudicators to refocus on contracts and claims that require higher-level thinking, as well as coordination among different health insurance companies.
"It comes down to providing a better experience for the end user," Aetna Chief Technology Officer Claus Jensen said. The software will help Aetna become a better partner to providers and patients in the healthcare ecosystem. "We do more than just pay bills and answer questions on the phone."
Aetna estimates that as of July 2019, the app has helped them save $6 million annually in processing and rework costs .
Jensen’s advice: Narrow your focus and take your time. In an ideal world, companies would implement AI that can solve very niche problems. Jensen said broad-based solutions are vague and ultimately fail, and if Aetna applies general-purpose AI to their business, it certainly won't work. In addition, Aetna spent several months instrumenting the process, writing rules, and testing the application. Jensen said many people don't have the patience to slow down and do things the right way.
The above is the detailed content of Five success stories explore the business value of natural language processing. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
