Home > Article > Backend Development > 50 lines of Python code to create a big data screen!
The PywebIO module in Python can help developers quickly build web applications or browser-based applications without HTML and JavaScript. For GUI applications, PywebIO can also be used in conjunction with some commonly used visualization modules to create a large visual screen.
Let’s first install the modules we need to use.
pip install pywebio pip install cutecharts
The cutecharts module mentioned above is a hand-drawn style visualization artifact in Python. I believe everyone is familiar with it. Let’s take a look at the effect of combining it with the PywebIO module to draw charts. The code As follows:
from cutecharts.charts import Bar from cutecharts.faker import Faker from pywebio import start_server from pywebio.output import put_html def bar_base(): chart = Bar("Bar-基本示例", width="100%") chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel") chart.add_series("series-A", Faker.values()) put_html(chart.render_notebook()) if __name__ == '__main__': start_server(bar_base, debug=True, port=8080)
output
The logic of the above code is not difficult to understand. First instantiate a histogram Bar() object, and then fill in the X axis The corresponding label and the corresponding Y-axis value, and finally call the put_html() method in the PywebIO module, we will see a URL.
#Enter the URL in the browser to see the chart we drew. Of course, there is a Page() method in the cutecharts module to connect various charts to create a large visual screen. The code is as follows:
def bar_base(): chart = Bar("Bar-基本示例", width="100%") chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel") chart.add_series("series-A", Faker.values()) return chart def pie_base() -> Pie: chart = Pie("标题", width="100%") ........ return chart def radar_base() -> Radar: chart = Radar("标题", width="100%") ...... return chart def line_base() -> Line: chart = Line("标题", width="100%") ...... return chart def main(): page = Page() page.add(pie_base(), pie_base(), radar_base(), line_base(), bar_base()) put_html(page.render_notebook()) if __name__ == '__main__': start_server(main, debug=True, port=8080)
output
When the PywebIO module meets the Pyecharts module, the logic of the code is basically the same as that of cutecharts. First, a chart object is instantiated, and then after adding the data and setting up the chart After styling, the put_html() method is finally called to render the final result in the browser.
# `chart` 是你的图表的实例 pywebio.output.put_html(chart.render_notebook())
In this case, we call the combination component in Pyecharts to present the completed charts respectively. The code is as follows:
def bar_plots(): bar = ( Bar() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts(title_opts=opts.TitleOpts(title="Grid-Bar")) ) return bar def line_plots(): line = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"), legend_opts=opts.LegendOpts(pos_top="48%"), ) ) return line def main(): c = ( Grid() .add(bar_plots(), grid_opts=opts.GridOpts(pos_bottom="60%")) .add(line_plots(), grid_opts=opts.GridOpts(pos_top="60%")) ) c.width = "100%" put_html(c.render_notebook()) if __name__ == '__main__': start_server(main, debug=True, port=8080)
output
The combination of PywebIO and Bokeh will be slightly different from the above in terms of code syntax. The specific differences are as follows:
from bokeh.io import output_notebook from bokeh.io import show output_notebook(notebook_type='pywebio') fig = figure(...) ... show(fig)
For example, we To draw a simple histogram, the code is as follows:
def bar_plots(): output_notebook(notebook_type='pywebio') fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] counts = [5, 3, 4, 2, 4, 6] p = figure(x_range=fruits, plot_height=350, title="Fruit Counts", toolbar_location=None, tools="") p.vbar(x=fruits, top=counts, width=0.9) p.xgrid.grid_line_color = None p.y_range.start = 0 show(p) if __name__ == "__main__": start_server(bar_plots, debug=True, port=8080)
output
##Browser-based GUI applicationIn addition to the Pywebio module In addition to combining with commonly used visualization modules for drawing various charts, we can also use it to build a browsing-based graphical interface. Let's first make the simplest application. The code is as follows:from pywebio.input import * from pywebio.output import * data = input_group( "用户数据", [ input("请问您的名字是: ", name="name", type=TEXT), input("输入您的年龄", name="age", type=NUMBER), radio( "哪个洲的", name="continent", options=[ "非洲", "亚洲", "澳大利亚", "欧洲", "北美洲", "南美洲", ], ), checkbox( "用户隐私条例", name="agreement", options=["同意"] ), ], ) put_text("表格输出:") put_table( [ ["名字", data["name"]], ["年龄", data["age"]], ["位置", data["continent"]], ["条例", data["agreement"]], ] )output The explanations of some of the function methods are as follows:
The above is the detailed content of 50 lines of Python code to create a big data screen!. For more information, please follow other related articles on the PHP Chinese website!