search
HomeTechnology peripheralsAIKey challenges in using real-time data

Key challenges in using real-time data

Apr 13, 2023 am 08:07 AM
Real-time dataml model

Key challenges in using real-time data

Analyzing real-time data has always presented a challenge to those working with ML models as they look to improve the accuracy of their inferences using the latest data.

Only AI and ML can make sense of large volumes of streaming data because real-time data is delivered too fast for manual analysis or traditional software for data organization. But while working with real-time data is one of the most valuable applications of ML models, it raises several questions for those looking to leverage the tool for data analysis.

Next, we’ll discuss some of the key challenges faced by those trying to use real-time data and potential ways to overcome them

In what use cases do enterprises need to use streaming data instead of Batch data? Overall, data streams can be used for real-time automated decision-making, which may involve leveraging machine learning models in a production environment on complex data sets. Examples of this include algorithmic trading in high-frequency trading, anomaly detection in medical devices, intrusion detection in cybersecurity, or e-commerce conversion/retention models. Therefore, working with batch data falls under "everything else," where real-time decision-making and context are not as important as having large amounts of data to analyze. Therefore, working with batch data falls into the "everything else" category, where real-time decisions and context are not important, but rather large amounts of data are analyzed. Examples of this include demand forecasting, customer segmentation and multi-touch attribution.

Challenges of using real-time data

While using real-time data to train ML models on continuous data streams has the advantages of quickly adapting to changes and being able to save data storage space, there are also challenges. Converting the model to real-time data may incur additional overhead and may not provide ideal results if these challenges are not properly considered.

Definition of real-time

Working with real-time data presents several challenges, starting with the concept of real-time data itself. Different people have different understandings of the word "real-time". In an analytics environment, some may think real-time means getting answers immediately, while others don't mind waiting a few minutes from the moment data is collected until the analytics system responds.

These different definitions of real-time may lead to unclear results. Consider a scenario in which the management team’s expectations and understanding of real-time analytics differ from those implementing it. Unclear definitions lead to uncertainty about potential use cases and business activities (current and future) that can be addressed.

Constant Data Speed ​​and Volume Variation

Generally speaking, real-time data does not flow at a consistent speed or volume, and it is difficult to Predict how it will behave. Unlike processing batch data, it is impractical to constantly restart tasks until a defect is discovered in the pipeline. Since data is constantly flowing, any errors in processing it can have a domino effect on the results.

The limited nature of the real-time data processing stage further hinders standard troubleshooting procedures. So while testing may not catch every unexpected error, newer testing platforms can better regulate and mitigate problems.

Data Quality

Getting useful insights from real-time data also depends on the quality of the data. A lack of data quality can impact the entire analytics workflow, just as poor data collection can impact the performance of the entire pipeline. There’s nothing worse than drawing business conclusions from wrong data.

By sharing responsibility and democratizing access to data, a strong focus on data correctness, comprehensiveness and completeness can be achieved. An effective solution will ensure that everyone in every function recognizes the value of accurate data and encourages them to take responsibility for maintaining data quality. Additionally, to ensure that only trustworthy data sources are used, automated procedures must be used to apply similar quality policies to real-time data, as this reduces unnecessary analysis efforts.

Various Data Sources and Formats

Real-time data processing pipelines can face difficulties due to the diversity of data formats and the increasing number of data sources. For example, in e-commerce, activity monitoring tools, electronic activity trackers, and consumer behavior models all track web activity in the online world. Likewise, in manufacturing, a wide variety of IoT devices are used to collect performance data from various devices. All of these use cases have different data collection methods and often different data formats as well.

Due to these changes in data, API specification changes or sensor firmware updates may cause interruptions in real-time data flow. To avoid erroneous analysis and potential future problems, real-time data must account for situations where events cannot be recorded.

Outdated Technology

Various new sources of information create problems for businesses. The scale of current processes for analyzing incoming data has grown significantly. Gathering and preparing information using an information lake on-premises or in the cloud may require more testing than expected.

The problem stems primarily from the use of legacy systems and technologies, which require an ever-expanding army of skilled information designers and engineers to acquire and synchronize information and create the inspection pipelines needed to communicate information to applications.

Given the unique challenges of processing real-time data, organizations need to consider which tools will help them deploy and manage AI and ML models in the most effective way. An easy-to-use interface that allows anyone on the team to leverage real-time metrics and analytics to track, measure, and help improve ML performance would be ideal.

Basic observability features, such as real-time audit trails of data used in production, can help teams easily identify the root causes of snags. Ultimately, an enterprise's competitiveness may depend on its ability to derive actionable business insights from real-time data with data processing pipelines optimized for large volumes of data while still providing visibility into model performance.

The above is the detailed content of Key challenges in using real-time data. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
From Friction To Flow: How AI Is Reshaping Legal WorkFrom Friction To Flow: How AI Is Reshaping Legal WorkMay 09, 2025 am 11:29 AM

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

This Is What AI Thinks Of You And Knows About YouThis Is What AI Thinks Of You And Knows About YouMay 09, 2025 am 11:24 AM

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

7 Steps To Building A Thriving, AI-Ready Corporate Culture7 Steps To Building A Thriving, AI-Ready Corporate CultureMay 09, 2025 am 11:23 AM

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Netflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionNetflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionMay 09, 2025 am 11:22 AM

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI ​​experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Take These Steps Today To Protect Yourself Against AI CybercrimeTake These Steps Today To Protect Yourself Against AI CybercrimeMay 09, 2025 am 11:19 AM

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber ​​criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

A Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionA Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionMay 09, 2025 am 11:13 AM

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

AI's Biggest Secret — Creators Don't Understand It, Experts SplitAI's Biggest Secret — Creators Don't Understand It, Experts SplitMay 09, 2025 am 11:09 AM

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

Bulbul-V2 by Sarvam AI: India's Best TTS ModelBulbul-V2 by Sarvam AI: India's Best TTS ModelMay 09, 2025 am 10:52 AM

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools