


This article introduces a paper included in AAAI 2023. The paper was written by Hua Yang and Louis Ann from the Shanghai Key Laboratory of Scalable Computing and Systems at Shanghai Jiao Tong University and Queen's University Belfast. Teacher Wang Hao from Nazhou State University jointly completed it.
- Paper link: https://arxiv.org/abs/2212.01197
- Code link (including instructions for using the ALA module): https://github.com/TsingZ0/FedALA
This paper proposes an adaptive local aggregation method for federated learning to deal with the statistical heterogeneity problem in federated learning by automatically capturing the information required by the client from the global model. The author compared 11 SOTA models and achieved an excellent performance of 3.27% beyond the optimal method. The author applied the adaptive local aggregation module to other federated learning methods and achieved an improvement of up to 24.19%.
1 Introduction
Federated learning (FL) helps people fully understand and learn from each other while protecting privacy by keeping user privacy data locally without disseminating it. Uncover the value in your user data. However, since the data between clients is not visible, the statistical heterogeneity of the data (non-independent and identically distributed data (non-IID) and data volume imbalance) has become one of the huge challenges of FL. The statistical heterogeneity of data makes it difficult for traditional federated learning methods (such as FedAvg, etc.) to obtain a single global model suitable for each client through FL process training.
In recent years, personalized federated learning (pFL) methods have received increasing attention due to their ability to cope with the statistical heterogeneity of data. Unlike traditional FL, which seeks a high-quality global model, the pFL approach aims to train a personalized model suitable for each client with the collaborative computing power of federated learning. Existing pFL research on aggregating models on the server can be divided into the following three categories:
(1) Methods to learn a single global model and fine-tune it, including Per-FedAvg and FedRep;
(2) Methods for learning additional personalization models, including pFedMe and Ditto;
(3) Aggregation through personalization ( or local aggregation) methods for learning local models, including FedAMP, FedPHP, FedFomo, APPLE and PartialFed.
The pFL methods in categories (1) and (2) use all information from the global model for local initialization (referring to initializing the local model before local training at each iteration). However, in the global model, only information that improves the quality of the local model (information required by the client that meets the local training goals) is beneficial to the client. Global models generalize poorly because they contain information that is both needed and not required by a single client. Therefore, researchers propose pFL methods in category (3) to capture the information required by each client in the global model through personalized aggregation. However, the pFL methods in category (3) still exist (a) without considering the client's local training goals (such as FedAMP and FedPHP), (b) with high computational and communication costs (such as FedFomo and APPLE), (c) privacy Issues such as leakage (such as FedFomo and APPLE) and (d) mismatch between personalized aggregation and local training targets (such as PartialFed). Furthermore, since these methods make substantial modifications to the FL process, the personalized aggregation methods they use cannot be directly used in most existing FL methods.
In order to accurately capture the information required by the client from the global model without increasing the communication cost in each iteration compared to FedAvg, the author proposed a method for federation Learning Adaptive Local Aggregation Method (FedALA). As shown in Figure 1, FedALA captures the required information in the global model by aggregating the global model with the local model through the adaptive local aggregation (ALA) module before each local training. Since FedALA only uses ALA to modify the local model initialization process in each iteration compared to FedAvg without changing other FL processes, ALA can be directly applied to most other existing FL methods to improve their individuality. performance.
Figure 1: Local learning process on the client in iteration
2 Method
##2.1 Adaptive Local Aggregation (ALA)
Figure 2: Adaptive Local Aggregation (ALA) process
The adaptive local aggregation (ALA) process is shown in Figure 2. Compared with traditional federated learning, the downloaded global model is directly overwritten with the local model to obtain the local initialization model In the way (i.e. ), FedALA performs adaptive local aggregation by learning local aggregation weights for each parameter.
renew". In addition, the author implements regularization through the element-wise weight pruning method and limits the values in
to [0,1].
represents the number of neural network layers in The author initializes all the values in where Figure 3: Learning curve of client 8 on MNIST and Cifar10 datasets By choosing a smaller p value, the parameters required for training in ALA can be greatly reduced without affecting the performance of FedALA. Furthermore, as shown in Figure 3, the authors observed that once it is trained to convergence in the first training session, it does not have a great impact on the local model quality even if it is trained in subsequent iterations. That is, each client can reuse the old 2.2 ALA Analysis Without affecting the analysis, for the sake of simplicity, the author ignores The gradient term The author used ResNet-18 to compare the hyperparameters s and p on the Tiny-ImageNet data set in a practical data heterogeneous environment. The research on the impact of FedALA is shown in Table 1. For s, using more randomly sampled local training data for ALA module learning can make the personalized model perform better, but it also increases the computational cost. When using ALA, the size of s can be adjusted based on the computing power of each client. As can be seen from the table, FedALA still has outstanding performance even when using extremely small s (such as s=5). For p, different p values have almost no impact on the performance of the personalized model, but there is a huge difference in computational cost. This phenomenon also shows from one aspect the effectiveness of methods such as FedRep, which divides the model and retains the neural network layer close to the output without uploading it to the client. When using ALA, we can use a smaller and appropriate p value to further reduce the computational cost while ensuring the performance capabilities of the personalized model. Table 1: Research on hyperparameters and their impact on FedALA The author compared and analyzed FedALA with 11 SOTA methods in pathological data heterogeneous environment and practical data heterogeneous environment. As shown in Table 2, the data shows that FedALA outperforms these 11 SOTA methods in these cases, where "TINY" means using a 4-layer CNN on Tiny-ImageNet. For example, FedALA outperforms the optimal baseline by 3.27% in the TINY case. Table 2: Experimental results under pathological and real data heterogeneous environments In addition, the author The performance of FedALA was also evaluated under different heterogeneous environments and total number of clients. As shown in Table 3, FedALA still maintains excellent performance under these conditions. Table 3: Other experimental results Experiments based on Table 3 As a result, applying the ALA module to other methods can achieve up to 24.19% improvement. Finally, the author also visualized the impact of the addition of the ALA module on model training in the original FL process on MNIST, as shown in Figure 4. When ALA is not activated, the model training trajectory is consistent with using FedAvg. Once ALA is activated, the model can optimize directly toward the optimal goal with the information required for its training captured in the global model. Figure 4: Visualization of the model training trajectory on client No. 4 (or number of neural network blocks),
is consistent with the shape of the low-level network in
, and
is consistent with the rest of
The p-layer high-level network has the same shape.
to 1, and updates
based on the old
during each round of local initialization. In order to further reduce the computational cost, the author uses random sampling s
is the learning to update
Rate. In the process of learning
, the author froze other trainable parameters except
.
to capture the information it needs. The author adopts the method of fine-tuning
in subsequent iterations to reduce the computational cost.
and assumes
. According to the above formula,
can be obtained, where
represents
. Authors can think of updating
in ALA as updating
.
is scaled element by element in each round. Different from the local model training (or fine-tuning) method, the above update process of
can perceive the common information in the global model. Between different iteration rounds, the dynamically changing
introduces dynamic information into the ALA module, making it easy for FedALA to adapt to complex environments.
3 Experiment
The above is the detailed content of Surpassing SOTA by 3.27%, Shanghai Jiao Tong University and others proposed a new method of adaptive local aggregation. For more information, please follow other related articles on the PHP Chinese website!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
