search
HomeTechnology peripheralsAIArtificial intelligence: the driver of Industry 4.0

Artificial intelligence: the driver of Industry 4.0

A lot of the hype surrounding artificial intelligence in manufacturing focuses on industrial automation, but that’s just intelligence An aspect of the factory revolution—a natural next step in the quest for efficiency. Artificial intelligence also brings the ability to reveal new business avenues for manufacturing tables. As part of the emerging Industry 4.0 paradigm, we will provide an overview of AI’s ability to drive industrial automation and open up new business opportunities. Additionally, we'll cover how manufacturers can use this powerful technology to increase efficiency, improve quality, and better manage their supply chains.

Artificial Intelligence Manufacturing Use Cases

#1: Predicting Quality and Yield


Reducing production losses and preventing inefficiencies in the production process have always been a priority for manufacturers across all industries challenges faced. This is as true today as ever-increasing demand meets increasing competition.

On the one hand, consumer expectations are high; global consumption habits are gradually "Westernizing" even as the population surge continues. According to multiple surveys in recent years, the global population will grow by 25% by 2050, equivalent to 200,000 new mouths every day.

On the other hand, consumers have never had so many products to choose from. Recent surveys suggest that this abundance of choice means consumers are increasingly likely to abandon their favorite brands permanently, for example, if the product is no longer on the shelf.

Given these trends, manufacturers can no longer accept process inefficiencies and their associated losses. Every loss in waste, yield, quality or throughput erodes their bottom line and gives competitors an extra inch - assuming their production processes are more efficient.

The challenge faced by many manufacturers, especially those with complex processes, is that they eventually hit a ceiling when it comes to process optimization. Some inefficiencies have no obvious root cause, leaving process experts unable to explain them.

Predict Quality and Yield uses AI-driven process and machine health solutions to uncover the hidden causes of many of the perennial production losses manufacturers face. This is accomplished through continuous multivariate analysis, using uniquely trained machine learning algorithms to gain insights into individual production processes.

The specific artificial intelligence/machine learning technique used here is called supervised learning, which means the algorithm is trained to identify trends and patterns in data. Automated recommendations and alerts can then be generated to notify production teams and process engineers of impending issues and seamlessly share critical knowledge on how to prevent losses before they occur.

#2: Predictive maintenance

Predictive maintenance is one of the most famous applications of industrial artificial intelligence. Rather than performing maintenance according to a predetermined schedule, predictive maintenance uses algorithms to predict the next failure of a component, machine or system and then alerts personnel to perform focused maintenance procedures to prevent failure. These alerts occur at the right time to avoid unnecessary downtime.

These maintenance systems rely on unsupervised machine learning techniques to formulate predictions. Predictive maintenance solutions can help reduce costs while, in many cases, eliminating the need for planned downtime, thereby strengthening the bottom line and improving the employee experience.

With machine learning preventing failures, systems can continue to operate without unnecessary interruptions or delays. The required maintenance is very specific - technicians are informed of the components that need to be inspected, repaired and replaced; which tools to use and which methods to follow.

Predictive maintenance can also extend the remaining useful life (RUL) of machines and equipment, as secondary damage can be prevented while requiring less labor to perform maintenance procedures. Improving RUL can increase sustainability efforts and reduce waste.

#3: Human-robot collaboration

According to the International Federation of Robotics (IFR), as of 2020, there were approximately 1.64 million industrial robots in operation around the world. There are fears that robots will take away jobs, but the industry is seeing workers embrace programming, design, and maintenance.

Humans also work alongside robots to improve efficiency and productivity on and off the factory floor. As robots become more entrenched in manufacturing, artificial intelligence will play an important role. It will ensure the safety of human workers and give robots more autonomy to make decisions that can further optimize processes based on real-time data collected from the production floor.

#4: Generative Design

Manufacturers can also leverage artificial intelligence during the design phase. With a well-defined design brief as input, designers and engineers can use AI algorithms (often called generative design software) to explore all possible configurations of a solution.

The briefing can include limitations and definitions of material types, production methods, time constraints and budget constraints. The set of solutions generated by the algorithm can then be tested using machine learning. The testing phase provides additional information about which ideas or design decisions work and which don’t. From there, additional improvements can be made until an optimal solution is reached.

#5: Market Adaptation and Supply Chain

Artificial intelligence permeates the entire Industry 4.0 ecosystem and is not limited to the production workshop. Artificial intelligence algorithms can optimize the supply chain of manufacturing operations, helping manufacturers better respond to and predict changing markets.

Algorithms can construct market demand estimates by considering demand patterns categorized by various factors such as date, location, socio-economic attributes, macroeconomic behavior, political status, weather patterns, etc. Manufacturers can use this information to plan the path forward. Some of the processes that can be optimized using these insights include inventory control, staffing, energy consumption, raw materials, and financial decisions.

Industry 4.0 and Collaboration

AI is popular, but it requires collaboration to be used correctly. First, manufacturers should weigh the pros and cons of buying versus building the technology and expertise required. An Industry 4.0 system consists of many elements and stages that are unique to manufacturers:

  • Historical data collection.
  • Capture real-time data through sensors.
  • Data aggregation.
  • Connect through communication protocols, routing and gateway devices.
  • Integrate with PLC.
  • Dashboard for monitoring and analysis.
  • Artificial Intelligence Applications: Machine Learning and Other Technologies.

Industrial artificial intelligence is no longer a distant aspiration. Manufacturers can now use these technologies to address their specific business challenges and needs. As Industry 4.0 evolves and becomes more complex, manufacturers will need the agility and visibility that AI brings.

The above is the detailed content of Artificial intelligence: the driver of Industry 4.0. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment