Guest | Dou Zhicheng
Organization | Zhang Feng
Planning | Xu Jiecheng
It has been more than 20 years since the birth of search engines, and their form and structure have not changed much. With the continuous development of Internet technology, the search environment in the future will become more complex and diverse, and the way users obtain information will also undergo many changes. Various input forms such as natural language, voice, and vision will inevitably replace simple keywords; Multiple modal content outputs such as answers, high-level knowledge, analysis results, and generated content will replace the simple result list; the interaction method may also transition from a single round of retrieval to multiple rounds of natural language interaction.
So in the new search environment, what characteristics will future intelligent search technology show? Recently, at the AISummit Global Artificial Intelligence Technology Conference hosted by 51CTO, Mr. Dou Zhicheng, Vice Dean of Hillhouse School of Artificial Intelligence, Renmin University of China Through the keynote speech - "Next Generation Intelligent Search Technology", the development trends and core features of the new generation of intelligent search technology were shared with the audience. At the same time, interactive, multi-modal, explainable search, and large model-centered De-indexed search and other technologies have been analyzed in detail. This article has edited and organized the content of Mr. Dou Zhicheng’s speech, hoping to bring you some new inspiration:
Main features of future search
We think the future Search may have at least these five characteristics:
- Conversational, People and search engines are a multi-round interaction through natural language way.
- Personalization, will feedback different results according to the needs of different users, instead of giving the same results to everyone in a cookie-cutter manner.
- Multi-modal, The returned content and input method may not be limited to using text as a medium or method.
- Rich knowledge, The information returned by the search is not only in the form of a result list, but may be in various display forms, with various knowledge, Physically displayed.
- De-indexing,Inverted index or dense index also urgently needs to make big changes.
Conversational
The commonly used mode of search engines nowadays is to enter one or two words in a box to search. The future of search may involve us interacting with search engines in a conversational manner.
In the keyword retrieval method used by traditional search engines, we hope to describe all the core information we are looking for through keywords, that is, we assume that a single query can complete and accurately Express the need for this information. But when expressing a more complex information, keywords are actually difficult to meet the needs. Conversational search can fully express information needs through multiple rounds of interaction, which is more in line with the progressive information interaction method when people communicate.
Wanting to achieve this kind of interactive search will bring great challenges to the system or algorithm. It is necessary for the search engine to accurately understand the user's intention from multiple rounds of natural language interaction. , and at the same time, it is necessary to match the understood intention with the information the user wants.
Compared with traditional keyword search, conversational search requires more complex query understanding (such as the need to solve omissions, coreferences, etc. in the current query) to restore the user's True search intent. The simplest way is to stitch together all historical queries and encode them using a pre-trained language model.
Although the simple splicing dialogue method is simple, it may introduce noise. Not all historical queries are helpful for understanding the current query, so we only select the ones that are related to it. Dependency context, which can also solve the length problem.
Conversational retrieval model COTED
Based on the above ideas, we proposed the conversational dense retrieval model COTED, which mainly includes the following three parts:
1. By identifying dependencies in dialogue queries, we can remove the noise in the dialogue and better predict the user's intention.
2. Data enhancement (imitating various noise situations) and denoising loss function based on contrastive learning effectively allow the model to learn to ignore irrelevant context and combine it with the final matching loss function Joint, multitasking learning.
3. Reduce the learning difficulty of model multi-task learning through course learning, and ultimately improve model performance.
However, the data sufficient for training the conversational search model is actually very limited. In the case of limited few samples, the conversational search model Search model training is very difficult.
how to solve this problem? The starting point is whether search engine logs can be migrated for conversational search engine training. Based on this idea, large-scale web search logs are converted into conversational search logs, and then a conversational search model is trained on the converted data. But this method is also accompanied by two obvious problems:
First, traditional web search uses keyword search, and conversational search is a natural language conversation method. The query form is different and cannot be directly migrated. Second, there is a lot of noise in the query itself, and the user data in the search log needs to be cleaned, filtered, and converted before it can be used in conversational search.
Conversational search training model ConvTrans
In order to solve these problems, we made the conversational search training model ConvTrans and implemented the following functions.
First of all, the logs in traditional web search engines are organized in a graph, and the graph is constructed by establishing connections between queries and queries, queries and documents. On the basis of the graph, a two-stage query rewriting model based on T5 is used to rewrite a keyword query into the form of a question. After rewriting, each query in the graph will use natural language to express the new query, and then design a sampling algorithm to do a random walk on the graph to generate a conversation session, and then train the conversation model based on this data.
Experiments show that conversational search models trained with this automatically generated training data can achieve the same effect as using expensive artificial or manually labeled data, and as time goes by As the size of automatically generated training data increases, performance will continue to improve. This approach makes it possible to train conversational search models based on large-scale search logs.
Although the conversational search model has taken a big step forward in search, this conversational method is still passive, and search engines have always been passive. It accepts user input and returns results based on the input. The search engine does not actively ask the user what exactly you are looking for. But in the process of communication between people, when you are asked a question, sometimes you will take the initiative to ask some questions for clarification.
For example, in Bing search, if the Query is "Headaches", it will be a headache. It will ask you "What do want to know about this medical condition", "What do you want to know about this disease", such as its symptoms, treatment, diagnosis, causes or triggers. Because Headaches itself is a very broad Query, in this case, the system hopes to further clarify the information you want to find.
There are two problems here. The first is the candidate item, which specific item you want the user to clarify. The second is to clarify the question. The search engine takes the initiative to ask the user this question. The core word is the most crucial part of clarifying the problem.
In this aspect of exploration, the first is to generate some clarification candidates when a query is given through query logs and knowledge bases. Second, some core words of this clarification question can be predicted from the search results based on rules. At the same time, some data are also labeled, and a supervised model is used to classify text labels. Third, further train an end-to-end generative model based on this annotated data.
Personalization
Personalization refers to Future search will be user-centered. Today's search engines, no matter who searches, return the same results. This does not meet the specific information needs of users.
The current personalized search model adopts a model that first learns knowledge and information that the user is familiar with through user history, and performs personalized entity disambiguation on the query. Secondly, personalized matching is enhanced through disambiguated query entities.
In addition, we have also explored the construction of users' multi-interest models based on product categories. It is assumed that users may have some brand (specification, model) tendencies across all categories, but this tendency cannot be simple. is characterized by one or two vectors. A knowledge graph should be constructed based on the user's shopping history, and different interests for different categories should be learned through the knowledge graph, and ultimately more accurate personalized search results can be pushed.
You can also use the same personalized method to build a chatbot. The core idea is to learn the user’s personalized interests and language patterns through the user’s historical conversations, and train a personalized dialogue model that can be imitated. The (agent) user speaks.
Multimodal
Today’s search engines actually have quite a few limitations when processing multimodal information. In the future, the information users obtain may not only be some text and web pages, but may also include pictures, videos and more complex structural information. Therefore, future search engines still have a lot of work to do in acquiring multi-modal information.
The current search engine still has many flaws when it comes to understanding or performing cross-modal retrieval, that is, giving a text description and looking for its corresponding picture. of. If similar searches are migrated to mobile phones, the limitations will be even greater.
The so-called multi-modal means that the language, images, pictures, videos and other modalities you are looking for are mapped to a unified space, which means that you can find pictures through text. , pictures to find text, pictures to find pictures, etc.
In this regard, we made a large-scale multi-modal pre-training model - Wenlan. It focuses on training based on information contributed by weakly supervised correlations of massive Internet images and nearby text. Using the twin-tower mode, the final training is a picture encoder and a text encoder. These two encoders pass the end-to-end matching optimization learning process so that the final representation vector can be mapped to a unified space, rather than The fine grain of the picture and the fine grain of the text are spliced together.
This cross-modal retrieval capability actually not only provides users with more space end-to-end when using web search engines, but also At the same time, it can also support many applications, such as creation, whether it is social media or cultural and creative categories, it can be used to support it.
RICH KNOWLEDGE
Nowadays search engines generally search for web pages, but in the future the units processed by search engines will not only be web pages, but should be based on knowledge. The unit, including the returned results, should also be high-level knowledge, rather than a page-by-page list. Many times users actually want to use search engines to complete some complex information needs, so they hope that search engines will help analyze the results, rather than letting people analyze them one by one.
Based on this idea, we built an analysis engine, which is equivalent to a search engine that can provide in-depth text analysis and help users obtain high-level knowledge efficiently and quickly. Help users read and understand large-scale documents, and extract, mine, and summarize key information and knowledge contained in them. Finally, through an interactive analysis process, users can browse and analyze the high-level knowledge mined. , and then provide users with decision support.
For example, if a user wants to find information related to haze, he can directly enter "haze". The rich knowledge model is different from the results returned by traditional search engines. It may return a timeline to tell the user the distribution of information about smog on the timeline, etc. It will also summarize the sub-topics about smog and the institutions. Which ones, what characters are there. Of course, it can also provide a detailed list of results like a search engine.
This ability to directly provide analysis and interactive analysis can better help users obtain complex information. What is provided to users is no longer a simple list of search results. Of course, this kind of interactive multi-dimensional knowledge analysis is just a display method, and more methods can be used in the future. For example, one of the things we are doing now is from retrieval to generating (reasonable) content.
Go to index
Nowadays search engines widely adopt a staged approach with indexing as the core, crawling back the required content from a large number of Internet web pages and then building an Index, which is an inverted index or Dense vector indexing. After the user's Query comes, a recall is first performed, and then refined sorting is performed based on the recall results.
This model has many disadvantages, because it needs to be divided into stages. If there is a problem in one stage, for example, the desired result is not found in the recall stage, no matter how good it is in the sorting stage, It is also unlikely to return very good results.
In future search engines, this structure may be broken. The new idea is to use a large model to replace the current index schema, and all queries can be satisfied through the model. This no longer requires the use of indexes, but directly feeds back the desired results through this model.
On this basis, you can directly provide a list of results, or directly provide the answers required by the user, and even the answers can be images. The modes are better integrated together. Removing the index and feeding back the results directly through the model means that the model can directly return or directly return the document identifier. The document identifier must be embedded in the model to build a model-centered search.
Summary
Today’s search engines widely use the simple model of keywords as input and document list as output. There are already some problems in meeting people's complex information acquisition needs. The search engine of the future will be conversational, personalized, user-centered, and able to break through stereotypes. At the same time, it can process multi-modal information, process knowledge, and return knowledge. In terms of architecture, in the future, we will definitely break through the existing index-centered model that uses inverted index or dense vector index, and gradually transition to a model-centered model.
Guest introduction
Dou Zhicheng, Renmin University of China Vice President of Hillhouse Institute of Artificial Intelligence, Project Manager of "Intelligent Information Retrieval and Mining" of Beijing Zhiyuan Artificial Intelligence Research Institute. In 2008, he joined Microsoft Research Asia and engaged in Internet search-related work, developing rich experience in information retrieval technology research and development. He started teaching at Renmin University of China in 2014. His main research directions are intelligent information retrieval and natural language processing. He has won the Best Paper Nomination Award at the International Conference on Information Retrieval (SIGIR 2013), the Best Paper Award at the Asian Conference on Information Retrieval (AIRS 2012), and the Best Paper Award at the National Academic Conference on Information Retrieval (CCIR 2018, CCIR 2021). He serves as the chairman of the program committee of SIGIR 2019 (short article), the chairman of the program committee of the Information Retrieval Evaluation Conference NTCIR-16, and the deputy secretary-general of the Big Data Expert Committee of the China Computer Federation. In the past two years, he has mainly focused on personalized and diversified search ranking, interactive and conversational search models, pre-training methods for information retrieval, interpretability of search and recommendation models, personalized product search, etc.
The above is the detailed content of How will we conduct information searches in the future?. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
