Artificial Intelligence: PyTorch Deep Learning Framework
Today I will explain to you some basic knowledge of the PyTorch deep learning framework. I hope it will be helpful to everyone in understanding PyTorch!
1. PyTorch
PyTorch is a Python machine learning framework based on Torch. It was developed by Facebook's artificial intelligence research team in 2016. It solved the problem of Torch's low popularity due to the use of the Lua programming language, so it was implemented using the Python programming language, which is very widely integrated.
2. PyTorch commonly used toolkit
- torch: a general array library similar to Numpy, which can convert tensor types to (torch.cuda.TensorFloat) and supports Compute on GPU.
- torch.autograd: A package mainly used to build computational graphs and automatically obtain gradients
- torch.nn: Neural network library with common layers and cost functions
- torch. optim: Optimization package with general optimization algorithms (such as SGD, Adam, etc.)
- torch.utils: Data loader. Has trainers and other convenient functions
- torch.legacy(.nn/.optim): Legacy code ported from Torch for backward compatibility reasons
- torch.multiprocessing: python more Process concurrency enables memory sharing of torch Tensors between processes
3. PyTorch features
- Dynamic neural structure: PyTorch uses a reverse automatic derivation technology. You can arbitrarily change the behavior of the neural network with zero delay, avoiding the trouble of having to start from scratch if you need to adjust the neural network structure after the neural network is built. Using PyTorch greatly saves manpower and time costs.
- Debug is easy to debug: PyTorch’s design idea is linear, intuitive and easy to use. When you execute a line of code, you execute it step by step without the tediousness of asynchronous debugging, so when a bug appears in the code, By easily locating the code, you can avoid the trouble of query problems caused by bugs, incorrect pointing or asynchronous and opaque engines.
- The code is concise and easy to understand: PyTorch's code is more concise and easier to read than Tensorflow, and the source code of PyTorch itself is much friendlier to read, making it easier to understand PyTorch in depth.
- Highly active community: PyTorch has a very active community and forum (discuss.pytorch.org). Its documentation (pytorch.org) is very clear, and beginners can get started quickly; and it keeps pace with the PyTorch version and provides a complete set of tutorials. PyTorch is very simple to use, so the learning cost is relatively low.
4. Shortcomings of PyTorch
- Weak visual monitoring capabilities: Lack of directly available monitoring and visualization interfaces:
- Not as widely used as TensorFlow: PyTorch is not End-to-end machine learning development tool; actual application development requires converting PyTorch code to another framework, such as Caffe2, and deploying the application to servers, workstations, and mobile devices.
The above is the detailed content of Artificial Intelligence: PyTorch Deep Learning Framework. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
