An article briefly analyzing multi-sensor fusion for autonomous driving
What does intelligent connected cars have to do with autonomous driving?
The core of autonomous driving lies in the car, so what is the intelligent network connection system? The carrier of intelligent network connection is also the car, but the core is the network that needs to be connected. One is a network composed of sensors and intelligent control systems inside the car, and the other is a network connected and shared by all cars. Network connection is to put a car into a large network to exchange important information, such as location, route, speed and other information. The development goal of the intelligent network system is to improve the safety and comfort of the car through the design optimization of the car's internal sensors and control systems, making the car more humane. Of course, the ultimate goal is to achieve driverless driving.
The three core auxiliary systems of autonomous vehicles: environment perception system, decision-making and planning system, and control and execution system. These are also the three key technologies that the intelligent networked vehicle itself must solve. question.
What role does the environment awareness system play in the intelligent network connection system?
What is environment awareness technology and what does it mainly include?
Environment perception mainly includes three aspects: sensors, perception and positioning. Sensors include cameras, millimeter-wave radar, lidar, and ultrasonic waves. Different sensors are placed on the vehicle to collect data, identify colors, and measure distances.
If a smart car wants to use the data obtained by the sensor to achieve intelligent driving, the data obtained through the sensor must be processed by a (perception) algorithm and calculated Data results are generated to realize the exchange of information about vehicles, roads, people, etc., so that vehicles can automatically analyze whether the vehicle is driving safely or dangerously, so that vehicles can achieve intelligent driving according to people's wishes, and ultimately replace people in making decisions and autonomous driving goals. .
Then there will be a key technical issue here. Different sensors play different roles. How can the data scanned by multiple sensors form a complete object image data?
Multi-sensor fusion technology
The main function of the camera is to identify the color of objects, but it will be affected by rainy weather ; Millimeter wave radar can make up for the disadvantages of cameras being affected by rainy days, and can identify relatively distant obstacles, such as pedestrians, roadblocks, etc., but cannot identify the specific shape of obstacles; lidar can make up for the inability of millimeter wave radar to identify obstacles. Disadvantages of the specific shape; Ultrasonic radar mainly identifies short-range obstacles on the vehicle body, and is often used in the vehicle parking process. In order to fuse the external data collected from different sensors to provide a basis for the controller to make decisions, it is necessary to process the multi-sensor fusion algorithm to form a panoramic perception.
What is multi-sensor fusion (fusion algorithm processing), and what are the main fusion algorithms?
The basic principle of multi-sensor fusion is just like the process of comprehensive information processing by the human brain. Various sensors are used to complement and optimize the combination of information at multiple levels and in multiple spaces, and finally produce a pair of observations. Consistent interpretation of the environment. In this process, multi-source data must be fully utilized for reasonable control and use, and the ultimate goal of information fusion is to derive more useful information through multi-level and multi-aspect combinations of information based on the separated observation information obtained by each sensor. This not only takes advantage of the cooperative operation of multiple sensors, but also comprehensively processes data from other information sources to improve the intelligence of the entire sensor system.
The concept of multi-sensor data fusion was first used in the military field. In recent years, with the development of autonomous driving, various radars have been used to target vehicles. detection. Because different sensors have data accuracy issues, how to determine the final fused data? For example, if the lidar reports that the distance to the vehicle in front is 5m, the millimeter-wave radar reports that the distance to the vehicle in front is 5.5m, and the camera determines that the distance to the vehicle in front is 4m, how should the central processor make the final judgment? Then a set of multi-data fusion algorithms are needed to solve this problem.
Commonly used methods of multi-sensor fusion are divided into two categories: random and artificial intelligence. The AI category mainly includes fuzzy logic reasoning and artificial neural network methods; the stochastic methods mainly include Bayesian filtering, Kalman filtering and other algorithms. At present, automotive fusion sensing mainly uses random fusion algorithms.
The fusion perception algorithm of autonomous vehicles mainly uses the Kalman filter algorithm, which uses linear system state equations to optimally estimate the system state through system input and output observation data. It is an algorithm that currently solves most problems. They are all the best and most efficient methods.
Multiple sensors need to be processed by fusion algorithms. Enterprises will need algorithm engineers in the fusion sensing category to solve the problem of multi-sensor fusion. Most of the job requirements in the fusion sensing category are It is necessary to be able to master the working principles of various sensors and the data characteristics of signals, to be able to master fusion algorithms for software development and sensor calibration algorithm capabilities, as well as point cloud data processing, deep learning detection algorithms, etc.
The third part of environment awareness - positioning (slam)
Slam is called simultaneous positioning and mapping, which assumes that the scene is static In this case, the image sequence is obtained through the movement of the camera and the design of the 3-D structure of the scene is obtained. This is an important task of computer vision. The data obtained by the camera is processed by an algorithm, which is visual slam.
In addition to visual slam, environment-aware positioning methods also include lidar slam, GPS/IMU and high-precision maps. The data obtained by these sensors need to be processed by algorithms to form data results that provide location information basis for autonomous driving decisions. Therefore, if you want to work in the field of environmental perception, you can not only choose the fusion sensing algorithm position, but also choose the slam field.
The above is the detailed content of An article briefly analyzing multi-sensor fusion for autonomous driving. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
