Flowcharts exist in every aspect of our lives. They are of great help to us in tracking the progress of projects and making decisions on various things. As for the almighty Python, Drawing flow charts is also very easy. Today I will introduce to you two modules for drawing flow charts. Let’s look at the first one first.
SchemDraw
So in the SchemDraw module, there are six elements used to represent the main nodes of the flow chart. The ovals represent the beginning and end of the decision. , the code is as follows:
import schemdraw from schemdraw.flow import * with schemdraw.Drawing() as d: d += Start().label("Start")
output
The arrow represents the direction of decision-making and is used to connect each node. The code is as follows:
with schemdraw.Drawing() as d: d += Arrow(w = 5).right().label("Connector")
output
The parallelogram represents the problem you have to deal with and solve, and the rectangle represents the effort you have to make for it. The effort or process, the code is as follows:
with schemdraw.Drawing() as d: d += Data(w = 5).label("What's the problem")
output
##
with schemdraw.Drawing() as d: d += Process(w = 5).label("Processing")output
with schemdraw.Drawing() as d: d += Decision(w = 5).label("Decisions")output
import schemdraw from schemdraw.flow import * with schemdraw.Drawing() as d: d+= Start().label("Start") d+= Arrow().down(d.unit/2) # 具体是啥问题嘞 d+= Data(w = 4).label("Go camping or not") d+= Arrow().down(d.unit/2) # 第一步 查看天气 d+= Box(w = 4).label("Check weather first") d+= Arrow().down(d.unit/2) # 是否是晴天 d+= (decision := Decision(w = 5, h= 5, S = "True", E = "False").label("See if it's sunny")) # 如果是真的话 d+= Arrow().length(d.unit/2) d+= (true := Box(w = 5).label("Sunny, go camping")) d+= Arrow().length(d.unit/2) # 结束 d+= (end := Ellipse().label("End")) # 如果不是晴天的话 d+= Arrow().right(d.unit).at(decision.E) # 那如果是下雨天的话,就不能去露营咯 d+= (false := Box(w = 5).label("Rainy, stay at home")) # 决策的走向 d+= Arrow().down(d.unit*2.5).at(false.S) # 决策的走向 d+= Arrow().left(d.unit*2.15) d.save("palindrome flowchart.jpeg", dpi = 300)output
import networkx as nx import matplotlib.pyplot as plt import numpy as np G = nx.DiGraph() nodes = np.arange(0, 8).tolist() G.add_nodes_from(nodes) # 节点连接的信息,哪些节点的是相连接的 G.add_edges_from([(0,1), (0,2), (1,3), (1, 4), (2, 5), (2, 6), (2,7)]) # 节点的位置 pos = {0:(10, 10), 1:(7.5, 7.5), 2:(12.5, 7.5), 3:(6, 6), 4:(9, 6), 5:(11, 6), 6:(14, 6), 7:(17, 6)} # 节点的标记 labels = {0:"CEO", 1: "Team A Lead", 2: "Team B Lead", 3: "Staff A", 4: "Staff B", 5: "Staff C", 6: "Staff D", 7: "Staff E"} nx.draw_networkx(G, pos = pos, labels = labels, arrows = True, node_shape = "s", node_color = "white") plt.title("Company Structure") plt.show()output
nx.draw_networkx(G, pos = pos, labels = labels, bbox = dict(facecolor = "skyblue", boxstyle = "round", ec = "silver", pad = 0.3), edge_color = "gray" ) plt.title("Company Structure") plt.show()output
The above is the detailed content of Draw some interesting visualization charts in Python. For more information, please follow other related articles on the PHP Chinese website!

Implementing factory pattern in Python can create different types of objects by creating a unified interface. The specific steps are as follows: 1. Define a basic class and multiple inheritance classes, such as Vehicle, Car, Plane and Train. 2. Create a factory class VehicleFactory and use the create_vehicle method to return the corresponding object instance according to the type parameter. 3. Instantiate the object through the factory class, such as my_car=factory.create_vehicle("car","Tesla"). This pattern improves the scalability and maintainability of the code, but it needs to be paid attention to its complexity

In Python, the r or R prefix is used to define the original string, ignoring all escaped characters, and letting the string be interpreted literally. 1) Applicable to deal with regular expressions and file paths to avoid misunderstandings of escape characters. 2) Not applicable to cases where escaped characters need to be preserved, such as line breaks. Careful checking is required when using it to prevent unexpected output.

In Python, the __del__ method is an object's destructor, used to clean up resources. 1) Uncertain execution time: Relying on the garbage collection mechanism. 2) Circular reference: It may cause the call to be unable to be promptly and handled using the weakref module. 3) Exception handling: Exception thrown in __del__ may be ignored and captured using the try-except block. 4) Best practices for resource management: It is recommended to use with statements and context managers to manage resources.

The pop() function is used in Python to remove elements from a list and return a specified position. 1) When the index is not specified, pop() removes and returns the last element of the list by default. 2) When specifying an index, pop() removes and returns the element at the index position. 3) Pay attention to index errors, performance issues, alternative methods and list variability when using it.

Python mainly uses two major libraries Pillow and OpenCV for image processing. Pillow is suitable for simple image processing, such as adding watermarks, and the code is simple and easy to use; OpenCV is suitable for complex image processing and computer vision, such as edge detection, with superior performance but attention to memory management is required.

Implementing PCA in Python can be done by writing code manually or using the scikit-learn library. Manually implementing PCA includes the following steps: 1) centralize the data, 2) calculate the covariance matrix, 3) calculate the eigenvalues and eigenvectors, 4) sort and select principal components, and 5) project the data to the new space. Manual implementation helps to understand the algorithm in depth, but scikit-learn provides more convenient features.

Calculating logarithms in Python is a very simple but interesting thing. Let's start with the most basic question: How to calculate logarithm in Python? Basic method of calculating logarithm in Python The math module of Python provides functions for calculating logarithm. Let's take a simple example: importmath# calculates the natural logarithm (base is e) x=10natural_log=math.log(x)print(f"natural log({x})={natural_log}")# calculates the logarithm with base 10 log_base_10=math.log10(x)pri

To implement linear regression in Python, we can start from multiple perspectives. This is not just a simple function call, but involves a comprehensive application of statistics, mathematical optimization and machine learning. Let's dive into this process in depth. The most common way to implement linear regression in Python is to use the scikit-learn library, which provides easy and efficient tools. However, if we want to have a deeper understanding of the principles and implementation details of linear regression, we can also write our own linear regression algorithm from scratch. The linear regression implementation of scikit-learn uses scikit-learn to encapsulate the implementation of linear regression, allowing us to easily model and predict. Here is a use sc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
