


Introduction to Numpy
NumPy (Numerical Python) is an extension library of the Python language that supports a large number of dimensional array and matrix operations. In addition, it also provides a large number of mathematical function libraries for array operations.
NumPy is a very fast mathematics library, mainly used for array calculations, including:
- A powerful N-dimensional Array object ndarray
- Broadcast function function
- Tool for integrating C/C/Fortran code
- Linear algebra, Fourier transform, random number generation and other functions
- The most important feature of NumPy is its N The dimensional array object ndarray is a collection of a series of data of the same type. The index of the elements in the collection starts with the 0 subscript.
- ndarray object is a multi-dimensional array used to store elements of the same type. Each element in the array
- ndarray has the same storage size area in memory
numpy object creation:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
##Name
|
Description
|
||||||||||||||||||||||||
object
|
array or Nested array
|
||||||||||||||||||||||||
dtype
|
array element Data type, optional
|
||||||||||||||||||||||||
copy
|
Whether the object Need to copy, optional
|
||||||||||||||||||||||||
order
|
Create array The style, C is the row direction, F is the column direction, A is any direction (default)
|
||||||||||||||||||||||||
subok
|
Default returns an array consistent with the base class type |
||||||||||||||||||||||||
##ndmin |
Specify the minimum dimension of the generated array |
Name |
Description |
||||||||||||||||||||||||
##bool_
| ##Boolean data type (True or False) |||||||||||||||||||||||||
##Default integer type ( Similar to long, int32 or int64 in C language) |
##intc |
||||||||||||||||||||||||
The same as the int type of C, usually int32 or int 64 |
##intp |
||||||||||||||||||||||||
Integer type used for indexing (similar to C's ssize_t, usually still int32 or int64) |
int8 |
Bytes (-128 to 127) |
|||||||||||||||||||||||
##int16 |
Integer (-32768 to 32767) |
||||||||||||||||||||||||
##int32
|
Integer (-2147483648 to 2147483647)
|
||||||||||||||||||||||||
Unsigned integer (0 to 255) |
|||||||||||||||||||||||||
Unsigned integer (0 to 65535) |
|||||||||||||||||||||||||
Unsigned integer (0 to 4294967295) |
##uint64 |
||||||||||||||||||||||||
Unsigned integer (0 to 18446744073709551615) | |||||||||||||||||||||||||
float_ |
##Abbreviation for float64 type |
||||||||||||||||||||||||
float16 |
##Half-precision floating point number, including: 1 sign bit, 5 exponent bits , 10 mantissa digits
|
||||||||||||||||||||||||
float32
|
Single precision Floating point number, including: 1 sign bit, 8 exponent bits, 23 mantissa bits
|
||||||||||||||||||||||||
float64
|
Double precision floating point number, including: 1 sign bit, 11 exponent bits, 52 mantissa bits
|
||||||||||||||||||||||||
complex_
|
Abbreviation of complex128 type, that is, 128-bit complex number
| ||||||||||||||||||||||||
complex64
|
Complex number, representing a double 32-bit floating point number (real part and imaginary part)
|
||||||||||||||||||||||||
complex128
| ##Complex number, representing a double 64-bit floating point number (real part and imaginary part )
字符 |
对应类型 |
b |
布尔型 |
i |
(有符号) 整型 |
u |
无符号整型 integer |
f |
浮点型 |
c |
复数浮点型 |
m |
timedelta(时间间隔) |
M |
datetime(日期时间) |
O |
(Python) 对象 |
S, a |
(byte-)字符串 |
U |
Unicode |
V |
原始数据 (void) |
dt = np.dtype(np.int32) print(dt) 输出: int32 dt = np.dtype('i4') print(dt) 输出: int32 dt = np.dtype([('age', np.int8)]) print(dt) 输出: [('age', 'i1')]
结构化数据类型
student = np.dtype([('name','S20'), ('age','i1'), ('score', 'f4')]) a = np.array([('xm', 10, 98.123456789), ('xh', 8, 99.111111111), ('xl', '9', 100)], dtype=student) print(a) 输出: [(b'xm', 10,98.12346 ) (b'xh',8,99.111115) (b'xl',9, 100.)]
The above is the detailed content of An article explaining in detail the basic data types of the Python data analysis module Numpy. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version
