search
HomeBackend DevelopmentPython TutorialDebugging Pytorch memory leak issues using context decorators
Debugging Pytorch memory leak issues using context decoratorsApr 10, 2023 am 11:31 AM
pythonDecoratormemory leak

Decorators are specific implementations of python context managers. This article will illustrate how to use them through an example of pytorch GPU debugging. While it may not work in every situation, I found them to be very useful.

Debugging Pytorch memory leak issues using context decorators

Debugging Memory Leak Issues

There are many ways to debug memory leaks. This article will demonstrate a useful method for identifying problematic lines in your code. This method can help to find the specific location in a concise way.

Manual debugging line by line

If you encounter a problem, a classic and commonly used method is to use a debugger to check line by line, such as the following example:

  • Look for code snippets on how to calculate the total number of all tensors in pytorch in the search engine, such as: tensor-counter-snippet
  • Set breakpoints in the code
  • Use tensor-counter -snippet to get the total count of tensors
  • Use the debugger to perform the next step
  • Rerun tensor-counter-snippet and check if the tensor count is increased
  • Duplicate The steps above

It works, but it sounds like a lot of trouble. We can encapsulate it into a function, which can be called when needed, so that there is almost no need to modify the existing code, which leads us to introduce the function of the decorator.

Python Decorator

Decorators can be wrapped in any part of the code. Here we use the decorator to check if there are additional tensors. In addition, we also need a counter because the number of tensors needs to be calculated before and after execution. The pattern looks like this:

def memleak_wrapper(func):
def wrap(*args, **kwargs):
print("num tensors start is ...")
out = func(*args, **kwargs)
print("num tensors end is ...")
return out
return wrap@memleak_wrapper
 def function_to_debug(x):
print(f"put line(s) of code here. Input is {x}")
out = x + 10
return outout = function_to_debug(x=1000)
 print(f"out is {out}")
 
 #输入类似这样
 #num tensors start is ...
 #put line(s) of code here. Input is 1000
 #num tensors end is ...
 #outis 1010

To run this code, we need to put the line of code we want to check into a function (function_to_debug). But this is not the best because we still need to insert a lot of code manually. The other thing is that if the code block generates more than one variable, you need to find additional solutions to use these downstream variables.

Context Decorator

In order to solve the above problem, we can use context manager instead of function decorator. The most widely used example of a context manager is instantiating a context using the with statement. The most common one used to be:

with open("file") as f:
…

Using Python's contextlib library, Python users can easily create their own context managers. So in this article we will use ContextDecorator to complete the work we tried to use decorator above. Because it is easier to develop and easier to use:

 from contextlib import ContextDecorator
 
 class check_memory_leak_context(ContextDecorator):
def __enter__(self):
print('Starting')
return self
 
def __exit__(self, *exc):
print('Finishing')
return False

ContextDecorator has 2 methods: enter() and exit() which are called when we enter or exit the context. The *exc parameter in __exit__ represents any incoming exception.

Now we use it to solve the problem mentioned above.

Use ContextDecorator to find memory leaks

Because we need to calculate the total number of tensors, we encapsulate the calculation process into a function get_n_tensors(), so that the tensors can be calculated at the beginning and end of the context Quantity:

class check_memory_leak_context(ContextDecorator):
def __enter__(self):
self.start = get_n_tensors()
return self def __exit__(self, *exc):
self.end = get_n_tensors()
increase = self.end — self.start
 
if increase > 0:
print(f”num tensors increased with"
f"{self.end — self.start} !”)
else:
print(”no added tensors”)
return False

If there is an increase, print it to the console.

get_n_tensor() uses the garbage collector (gc) and is customized for pytorch, but can be easily modified for other libraries:

 import gc
 def get_n_tensors():
tensors= []
for obj in gc.get_objects():
try:
if (torch.is_tensor(obj) or
(hasattr(obj, ‘data’) and
torch.is_tensor(obj.data))):
tensors.append(obj)
except:
pass
return len(tensors)

It can be used now, and we can use it for any A line (or block) of code uses this context:

 x = arbitrary_operation(x)
 ...
 with check_memory_leak_context():
y = x[0].permute(1, 2, 0).cpu().detach().numpy()
x = some_harmless_operation()
 ...
 x = another_arbitrary_operation(x)

If a new tensor is created within the line wrapped by the context decorator, it will be printed.

Summary

This is a very good code snippet that you can put in a separate file during development. Here is the complete code for this article:

https://gist.github.com/MarkTension/4783697ebd5212ba500cdd829b364338

Finally I hope this small article can help you understand what a context manager is, how to use context decorators, and how to apply them to debugging pytorch .

The above is the detailed content of Debugging Pytorch memory leak issues using context decorators. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools