


A research report released by the research firm IDC in June 2020 showed that approximately 28% of artificial intelligence plans failed. Reasons cited in the report were a lack of expertise, a lack of relevant data and a lack of a sufficiently integrated development environment. In order to establish a process for continuous improvement of machine learning and avoid getting stuck, identifying key performance indicators (KPIs) is now a priority.
#In the upper reaches of the industry, data scientists can define the technical performance indicators of the model. They will vary depending on the type of algorithm used. In the case of a regression aimed at predicting someone's height as a function of their age, for example, one can resort to linear determination coefficients.
An equation to measure the quality of the prediction can be used: If the square of the correlation coefficient is zero, the regression line determines the 0% point distribution. On the other hand, if the coefficient is 100%, the number is equal to 1. Therefore, this indicates that the quality of the predictions is very good.
Deviation of predictions from reality
Another metric for evaluating regression is the least squares method, which refers to the loss function. It involves quantifying the error by calculating the sum of squared deviations between the actual value and the predicted line, and then fitting the model by minimizing the squared error. In the same logic, one can utilize the mean absolute error method, which consists in calculating the average of the fundamental values of the deviations.
Charlotte Pierron-Perlès, who is responsible for strategy, data and artificial intelligence services at French consultancy Capgemini, concluded: "In any case, this amounts to measuring the gap with what we are trying to predict."
For example, In classification algorithms for spam detection, it is necessary to look for false positives and false negatives of spam. Pierron Perlès explains: "For example, we developed a machine learning solution for a cosmetics group that optimizes the efficiency of a production line. The aim was to identify defective cosmetics at the beginning of the production line that could cause production interruptions. We worked closely with the factory operators Discussions followed with them seeking a model to complete the detection even if it meant detecting false positives, that is, qualified cosmetics could be mistaken for defective."
Based on false positives and false negatives The concept of three other metrics allows the evaluation of classification models:
(1) Recall (R) refers to a measure of model sensitivity. It is the ratio of correctly identified true positives (taking positive coronavirus tests as an example) to all true positives that should have been detected (positive coronavirus tests and negative coronavirus tests were actually positive): R = true positives / true positives false Negative.
(2) Precision (P) refers to the measure of accuracy. It is the ratio of correct true positives (positive COVID-19 tests) to all results determined to be positive (positive COVID-19 tests negative COVID-19 tests): P = true positives / true positives false positives.
(3) Harmonic mean (F-score) measures the model’s ability to give correct predictions and reject other predictions: F=2×precision×recall/precision-recall
of the model Promotion
DavidTsangHinSun, chief senior data scientist at French ESNKeyrus company, emphasized: "Once a model is built, its generalization ability will become a key indicator."
So how to estimate it? By measuring the difference between predictions and expected results, and then understanding how that difference evolves over time. He explains, "After a period of time, we may encounter divergence. This may be due to underlearning (or overfitting) due to insufficient training of the data set in terms of quality and quantity."
So what is the solution? For example, in the case of image recognition models, adversarial generative networks can be used to increase the number of pictures learned through rotation or distortion. Another technique (applicable to classification algorithms): synthetic minority oversampling, which consists of increasing the number of low-occurrence examples in the data set through oversampling.
Disagreement can also occur in the case of over-learning. In this configuration, the model will not be restricted to the expected correlations after training, but due to overspecialization, it will capture the noise generated by the field data and produce inconsistent results. DavidTsangHinSun pointed out, "It is then necessary to check the quality of the training data set and possibly adjust the weight of the variables."
While the economic key performance indicators (KPIs) remain. Stéphane Roder, CEO of French consulting firm AIBuilders, believes: “We have to ask ourselves whether the error rate is consistent with the business challenges. For example, the insurance company Lemonade has developed a machine learning module that can respond to customer requests within 3 minutes after filing a claim. information (including photos) to pay insurance benefits to the customer. Taking into account the savings, a certain error rate incurs costs. Over the entire life cycle of the model, especially compared to the total cost of ownership (TCO), from development to maintenance , it is very important to check this measurement value."
Adoption Level
Even within the same company, expected key performance indicators (KPIs) may vary. Charlotte Pierron Perlès of Capgemini noted: "We developed a consumption forecasting engine for a French retailer with an international standing. It turned out that the precise targeting of the model differed between products sold in department stores and new products. Sales of the latter Dynamics depend on factors, especially those related to market reaction, which are, by definition, less controllable."
The final key performance indicator is adoption levels. Charlotte Pierron-Perlès said: "Even if a model is of good quality, it is not enough on its own. This requires the development of artificial intelligence products with a user-oriented experience that can be used for business and realize the promise of machine learning."
Stéphane Roder concluded: “This user experience will also allow users to provide feedback, which will help provide artificial intelligence knowledge outside the daily production data flow.”
The above is the detailed content of What KPIs can be used to measure the success of artificial intelligence projects?. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
