


When the wind is strong enough to blow the umbrella, the drone is stable, like this:
Windflying is a part of flying in the air. From a large level, wind speed may bring challenges to pilots when they land their aircraft; from a small level, gusty winds will also affect the flight of drones.
Currently, drones either fly under controlled conditions, without wind, or are operated by humans using remote controls. Drones are controlled by researchers to fly in formations in the open sky, but these flights are usually conducted under ideal conditions and environments.
However, for drones to autonomously perform necessary but routine tasks, such as delivering packages, they must be able to adapt to wind conditions in real time.
To give drones better maneuverability when flying in the wind, a team of engineers from Caltech developed Neural-Fly, a deep neural network that An artificial intelligence tool that allows drones to remain agile in windy conditions by simply updating some key parameters to help drones respond to new and unknown wind conditions in real time.
At the beginning of the article, we have initially seen the wind resistance ability of UAVs. The following shows a four-rotor UAV. With the help of the tools developed in this research, it can achieve wind speeds of up to Complete the figure-8 shuttle operation at 27 mph:
Watch the drone flying in the wind from a different angle:
In order for the drone to shuttle under various wind speeds, data is essential. This study does not require much data, and it was obtained in just 12 After minutes of flight data, an autonomous quadcopter drone equipped with Neural-Fly learned how to respond to strong winds. “The amount of data used is very small,” said Michael O’Connell, a graduate student in Caltech’s Department of Aeronautics and Astronautics and one of the paper’s authors.
The research was published Wednesday in the journal Science Robotics.
- Paper address: https://www.science.org/doi/10.1126/scirobotics.abm6597
- arXiv address: https://arxiv.org/pdf/2205.06908.pdf
In the Neural-Fly experimental training, the drone flies in the wind Flying in the cave, there are six different wind speeds, the fastest being 13.4 mph.
Based on this data, the team created deep neural networks and then allowed their aircraft to skillfully maneuver in the same wind tunnel, e.g. Zoom into the gate in a figure-8 pattern or cruise through two oval gates. The drone traveled faster in testing than it had experienced in training: about 27 miles per hour. This is the maximum wind speed that the wind tunnel can generate, said Guanya Shi, an author on the paper and a graduate student at Caltech. In addition to requiring only a small amount of data, the software only runs on a Raspberry Pi, an inexpensive computing device.
Corresponding author Soon-Jo Chung, professor of aerospace, control and dynamic systems at Caltech, said the error rates they saw compared with existing SOTA technology, equipped with the new The system's drone flight performance is 2.5 to 4 times better.
The picture below from left to right is Shi Guanya, Soon-Jo Chung and Michael O'Connell. It is worth congratulating that Shi Guanya will join the Robotics Institute of the School of Computing at Carnegie Mellon University as an assistant professor in September 2023.
# Researchers said that this technology will be used for drone delivery or flying cars in the future.
Neural-Fly Technology Overview
Unmanned aerial vehicles (UAVs) perform in dynamic high-velocity winds if they are to achieve sustained commercialization Safe and precise flight maneuvers are critical. However, it is challenging to design efficient robot controllers using traditional control design methods because the relationship between different wind conditions and their impact on UAV maneuverability has not been studied in depth.
The “Neural-Fly” proposed by researchers at the California Institute of Technology is a data-driven method that serves as a trajectory tracking controller based on deep learning and can learn to quickly adapt to rapidly changing wind conditions. Figure 3(A) below shows the data collection process; 3(B) shows the input and labels of the training data under the wind speed of 13.3km/h (3.7m/s); 3(C) shows the input data and labels under different wind conditions. Distribution of labeled data.
Online adaptive offline meta-learning
Figure 2 below is an overview of the Neural-Fly method, showing It has made progress in adaptive flight control and deep learning-based robot control. Neural-Fly enables centimeter-level position error tracking for flexible and challenging trajectories under dynamic wind conditions for standard UAVs. Specifically, this method mainly consists of two parts, namely offline learning stage and online adaptive control stage for real-time online learning.
For the offline learning stage, the researchers developed Domain Adversarially Invariant Meta-Learning, DAIML), which learns aerodynamic wind-independent deep neural network (DNN) representations in a data-efficient manner. The representation adapts to different wind conditions by updating a set of linear coefficients output by a hybrid deep neural network.
DAIML is also data efficient, only using a total of 12 minutes of flight data under 6 different wind conditions to train the deep neural network. DAIML contains several key features that not only improve data efficiency but can also be informed by downstream online adaptive control stages.
It is worth noting that DAIML uses spectral normalization to control the Lipschitz property of deep neural networks to improve generalization to unseen data and provide closed-loop stability and Robustness. Additionally, DAIML uses a discriminative network to ensure that the learned representation is wind-invariant and that wind-related information is only included in the linear coefficients adapted to the online control stage.
For the online adaptive control stage, the researchers developed a regularized compound adaptive control law, which is based on how the learned representation interacts with the closed-loop control It is derived from the basic understanding of system interaction and has strict theoretical support.
Specifically, the adaptive law uses a combination of the position tracking error term and the aerodynamic prediction error term to update the linear coefficients related to the wind. This approach effectively guarantees stable and rapid adaptation to any wind conditions and robustness to imperfect learning. Although this adaptive control law can be used with many learned models, the precise representation learned from DAIML helps further improve the speed of adaptation.
Experimental results
In terms of the effect of Neural-Fly, it is 66% better than the nonlinear tracking controller on average, and better than L_1 since The adaptive controller is improved by 42%, which is 35% higher than the incremental nonlinear dynamic inversion (INDI) controller. All of these results were accomplished using standard quadcopter drone hardware while running the PX4's default tuned attitude control.
Even compared to related work that has no external wind interference and uses more complex hardware (such as onboard optical sensors that require 10 times the control frequency and use DC motor speed feedback), Neural- The Fly's tracking performance is also competitive.
Table 1 below shows the error tracking statistics of different methods under different wind conditions.
The researchers compared Neural-Fly with two variants, Neural-Fly-Transfer and Neural-Fly-Constant . Among them, NF-Transfer uses representations learned from training on data from different drones, while NF-Constant only uses adaptive control laws with trivial non-learning basis.
Neural-Fly-Transfer demonstrates robustness to UAV configuration changes and model mismatches, and the NF-Constant, L_1, and INDI methods all directly adapt to unknown dynamics without Assuming the underlying physical structure, they have similar performance.
Finally, the researchers proved that Neural-Fly can implement a series of functions, allowing the drone to follow the trajectory and fly through the low-altitude door nimbly under strong wind conditions, as shown in Figure 1 below. .
The above is the detailed content of A drone that can withstand strong winds? Caltech uses 12 minutes of flight data to teach drones to fly in the wind. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version
Recommended: Win version, supports code prompts!
