Although artificial intelligence (AI) has become more advanced due to exponential advances, the limitations of this modern technology still exist.
So, can synthetic data be the solution to all problems related to artificial intelligence?
In the fourth industrial revolution, every industry has discovered the potential of modern technologies; such as artificial intelligence (AI) and machine learning (ML).
Almost every other organization is deploying AI to create more efficient business processes and ensure better customer satisfaction. However, startups, SOHOs, and small and medium-sized businesses (SMBs) face a major problem when adopting AI – it’s known as the cold start problem. While startups and SMEs generally do not have the resources to collect big data, the cold start problem is essentially a lack of such relevant data.
On the other hand, industry giants already have the resources to collect real-world data and apply it to train their AI systems. Therefore, the odds of winning for small and medium-sized enterprises are great. In this case, synthetic data may be the necessary enabler.
Synthetic data can be the driving force behind data-driven business models. Furthermore, studies have shown that synthetic data produces the same results as real data. Synthetic data is considered cheaper and takes less time to process than real data. Therefore, the emergence of synthetic data can level the playing field currently dominated by large companies in favor of SMEs and startups.
Discover the Benefits of Synthetic Data
Synthetic data is computer-generated artificial data based on user-specified parameters to ensure the data is as close as possible to real-world historical data. Typically, game engines such as Unreal Engine and Unity are often used as simulation environments for testing and training AI-based applications such as self-driving cars. There are many advantages to developing AI-driven applications based on synthetic data. Some of the advantages include:
#1. Develop PrototypesFinding, aggregating, and modeling large amounts of relevant real-world data is a tedious process. Therefore, generating synthetic data may be the best solution. Such data will enable building prototypes and testing such prototypes to obtain the desired results before mass production. Building prototypes using synthetic data is more efficient and cost-effective than real data.
Open AI, a non-profit artificial intelligence research company, is developing a number of artificial intelligence-based applications. Among these applications, researchers have developed robots trained with synthetic data that can learn a new task after seeing an action performed just once. A California tech startup is developing an artificial intelligence platform with a vision similar to Amazon Go. The startup aims to provide checkout-free solutions for convenience stores and retailers with the help of synthetic data. They have also introduced AI-powered smart systems to monitor every shopper in the store to identify and analyze their learning patterns.
2. Ensure data privacy
In November 2018, 500 million Marriott customers were affected in a high-profile data breach. Of those 500 million people, 327 million had their data including passport information, email addresses, mailing addresses and credit card information stolen. Due to such incidents, people are worried about the security and privacy of their data.
Synthetic data can effectively solve such privacy issues. Synthetic data does not include any personal data. Therefore, data privacy can be easily ensured. Synthetic data is extremely useful in training AI systems for healthcare applications. AI systems often require real patient data. This threatens patient privacy. Synthetic data allows the development of advanced artificial intelligence applications in healthcare while maintaining patient confidentiality.
For example, researchers from Nvidia, working with the Mayo Clinic in Minnesota and the MGH and BWH Clinical Data Science Center in Boston, are using generative adversarial networks to generate synthetic data for training neural networks. The generated synthetic data contains 3,400 MRIs from the Alzheimer's Disease Neuroimaging Initiative dataset and 200 4D brain MRIs and tumors from the Multimodal Brain Tumor Image Segmentation Benchmark dataset. Likewise, simulated X-rays can be used alongside actual X-rays to train AI systems to recognize multiple health conditions.
3. Unprecedented Scenario Testing and Training
One of the most important processes in developing AI-driven applications is testing system performance. If the system is not producing the desired output, it needs to be retrained. In this case, synthetic data can prove beneficial. Synthetic data can generate scenarios to test AI systems instead of using real data or testing the system in a real environment. This method is cheaper and less time-consuming than obtaining real data.
Similarly, synthetic data can also train new or existing systems for scenarios that may arise in the future that lack real data or events. With this approach, researchers can develop more futuristic AI applications. Additionally, retraining AI systems using synthetic data is simpler because generating synthetic data is simpler than collecting accurate real-world data.
Due to these benefits, synthetic data has become an accessible alternative for testing and training autonomous vehicles. Many self-driving car developers are using simulated gaming environments like GTA V to train their AI-based systems. Likewise, May Mobility is building a self-driving micromobility service by training their vehicles using synthetic data.
Another self-driving car developer called Waymo has already tested its self-driving cars by driving 5 billion miles on simulated roads and another 8 million miles on real roads. The synthetic data approach allows developers to test their self-driving cars on simulated roads, which is much safer than direct testing on actual roads.
4. Improve data flexibility
Getting real data is a tedious process that involves paying for annotation and ensuring that any copyright infringement is avoided. Furthermore, real data can only be used in specific scenarios with sufficient historical data in a specific domain. Unlike real data, synthetic data can instantly represent any combination of objects, scenes, events, and people. Synthetic data can generate general datasets that can discover niche applications. As a result, researchers can explore endless possibilities with synthetic data. Several startups are creating an open data economy by developing training data sets that meet customer requirements.
5. Exploring the Limitations of Synthetic Data
While synthetic data can help AI reach undiscovered territories, its limitations may become a major obstacle to its mainstream deployment. For starters, synthetic data simulates several properties of real-world data, but it doesn't exactly replicate the original data. When modeling such synthetic data, AI systems will only look for common trends and situations in the real data. Therefore, rare scenarios contained in corner cases in real-world data may never be included in synthetic data.
In addition, researchers have not yet developed a mechanism to check whether the data is accurate. Finding flaws in real data and reducing them is simpler than using synthetic data. AI-driven systems already have a “dark side” that promotes unintentional bias. Using synthetic data, it may be premature to predict the scope and impact of this bias.
6. Overcoming the Challenge
The need for organizations to understand that synthetic data is a fairly new discovery. The efficiency and accuracy of such data has not been evaluated against current industry standards. Therefore, synthetic data should not be considered a stand-alone data source. Especially in applications facing safety concerns, such as healthcare applications and self-driving cars, synthetic data must be combined with real-world data to develop AI systems. But applications in retail have a lower risk factor and can easily rely on synthetic data.
For testing purposes, synthetic data is a viable and inexpensive solution. However, for other purposes, the results of an AI system need to be thoroughly studied and analyzed before employing synthetic data as a stand-alone solution. With further research, synthetic data may become more reliable for a variety of operations.
The above is the detailed content of Can synthetic data make artificial intelligence better?. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
