search
HomeTechnology peripheralsAILeveraging Artificial Intelligence to Solve Oil and Gas Emissions Challenges
Leveraging Artificial Intelligence to Solve Oil and Gas Emissions ChallengesApr 08, 2023 pm 05:51 PM
Internet of thingsAIenergy management

Leveraging Artificial Intelligence to Solve Oil and Gas Emissions Challenges

As efforts to combat the climate crisis continue and GCC countries build momentum towards a net-zero carbon emissions future, the top priority for oil and gas companies has never been more important.

From a regional perspective, the oil and gas industry accounts for 9% of the entire oil and gas industry’s greenhouse gas emissions through direct upstream, midstream and downstream (Scope 1), indirect energy (Scope 2) and other indirect emissions (Scope 3) %.

The transition to low-carbon alternative energy sources alone will not be enough to ensure the emissions reductions needed, and a permanent solution to the problem will need to be coupled with an impactful technology unlike any other - artificial intelligence (AI) Combine.

While the net-zero route comes with immediate time constraints, oil and gas companies can adopt a technology-led approach with optimism. After all, the broader GCC is building a lot of momentum following recent groundbreaking actions and announcements.

Saudi Arabia is one of the countries leading the charge on decarbonization, primarily through the Saudi and Middle East Green Initiative, which aims to reduce carbon emissions by 60%, in part using clean hydrogen technology.

Similarly, the UAE recently confirmed plans to invest $163 billion in clean and renewable energy over the next 30 years as part of the country’s 2050 Net Zero strategic plan.

However, for these scenarios to occur as envisaged and for the sustainability framework to finally fulfill its potential, oil and gas companies must first be able to make an impactful contribution.

Addressing Emissions

While businesses can reduce scope 1 and scope 2 emissions through operational and energy efficiency programs, scope 3 emissions from transport, consumption and disposal must also be reduced, which requires optimization and Visibility.

Crucially, most businesses have not yet set out targets to accomplish this, or lack the understanding needed to succeed – ultimately failing to communicate, commit to or deliver on climate requirements.

To advance decarbonization, optimize operations and take advantage of full visibility into the scope of direct and indirect emissions, oil and gas players must embed digitalization and embrace enabling analytics into their organizational culture, processes and practices.

Together with artificial intelligence and machine learning (ML), these tools can enable companies to identify emission sources, thereby reducing energy consumption and optimizing operational energy efficiency. However, companies are tasked with identifying strong emission drivers and uncovering emission reduction initiatives across their entire operations. Methane is a particular area where there are difficulties when it comes to measuring, monitoring and reducing emissions – and AI could drive considerable progress.

AI TO CLIMATE RESCUE

As the foundation of the emissions reduction journey, AI helps incorporate disparate data sources and apply advanced algorithms to predict emissions, reduce levels and monitor success . Integration enables companies to leverage the technology to establish emissions baselines across all three scopes, pursue the most valuable emission reduction initiatives, and have a high degree of assurance about potential impacts.

However, in addition to the critical nature of reducing Scope 1 and 2 emissions, Scope 3 emissions can account for more than 90% of a company’s total greenhouse gas emissions. Additionally, developing a comprehensive Scope 3 emissions baseline and working with suppliers and customers to reduce greenhouse gas emissions is a complex analytical challenge.

Across the oil and gas supply chain, emissions have historically been difficult to measure without set industry standards and competitive benchmarks, while data quality is often substandard and companies lack the capabilities and resources needed to meet Scope 3 footprint requirements. .

Therefore, given the increasing mandatory pressure to drive solutions that are required to succeed is critical, companies must adhere to three emission reduction value chain considerations to drive their decarbonization efforts:

  • Baseline: Enterprises should ensure that baselines address operational processes and assets across the entire value chain, including suppliers, customers, production forecasts, production expiration information, and growth opportunities.
  • Reduction: Although financial viability is rarely in question, emissions reduction efforts should focus on win-win situations, including increasing production and expected asset life, and taking steps that are economically sustainable and Initiatives that can be deployed at scale.
  • Governance and Change Management: The integration of digital emission reduction tools with the overall data architecture is critical for accurate production and financial data visibility and successful decarbonization. In turn, changes in organizational culture and new ways of working can speed up decision-making and simplify greenhouse gas reduction.

As emissions reduction requirements intensify, oil and gas companies must adopt artificial intelligence tools and technologies to enhance relevant strategies and meet their obligations. In the process, newfound capabilities will enhance the collective process of establishing emissions baselines, optimizing operations and accurate reporting, promoting valuable climate change outcomes.

Emission reduction will eventually become an indispensable competitive advantage, and technology will play an important role in a win-win outcome for the relevant players and the planet.

The above is the detailed content of Leveraging Artificial Intelligence to Solve Oil and Gas Emissions Challenges. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.