Artificial intelligence (AI) is being adopted by industries to harness the power of data and use it to make smarter decisions.
This article will explain how to identify opportunities for AI in machine vision applications.
Business Requirements for Artificial Intelligence Systems
Managing Expectations
AI approaches have specific use cases. After all, it is not a universal solution and cannot solve all problems. Some applications are better suited to traditional computer vision, some may require both, and some may require only artificial intelligence. AI systems are expensive—both in terms of cost and upfront resources required. Open source tools require significant development time, and external tools are often expensive. Additionally, a GPU is often required to achieve adequate performance on the system. Many manufacturers often don't have GPUs or equivalent processing power. Therefore, it is important to determine which applications are well suited for AI with strong business needs.
The importance of visual system settings
Before entering AI, it is recommended to have a solid foundation in visual system settings. However, this is less important for AI, which can often handle worse conditions than traditional systems. All the normal machine vision system rules apply here - good lighting, camera resolution, focal length, etc. If any of these factors aren't up to scratch, it's worth going back and addressing them before delving further into AI. Ensure robust vision system setup for best results.
Reference Human Performance
AI systems are most successful where human performance is strong. Once the system is set up, operators can easily identify/classify images by eye, thus determining whether they are suitable for AI. However, if human performance is insufficient, then the AI model is likely to perform poorly. Using human performance as a reference point for what an AI model can achieve, if an operator can only identify images 70% of the time correctly, it's unlikely that the AI will perform better than that. Therefore, if human performance is not good enough for an application, that performance issue should be addressed first and improved to an acceptable level. Once operators achieve expected performance, AI can be considered.
Time and Resources
Collecting images and training the model requires considerable effort. Often, collecting high-quality images is the hardest part because many manufacturers have very low defect levels. Without data, it can be difficult to train a model for defective parts. Training tools are helpful, providing pre-trained models that require fewer samples to train. Training is an iterative process spanning multiple steps to find the ideal parameters for the model to run. Optimizing a model often requires time and experimentation. Additionally, if new data appears in the field, the model will need to be trained and deployed again.
Artificial Intelligence Application Examples:
One example application of artificial intelligence in machine vision is for final assembly inspection, another is for printed circuit boards or PCB detection.
❶ Final assembly inspection:
Background
Final inspection of parts/products or components is usually performed by operators, or traditional machine vision system, or both. Teledyne cameras will be highlighted here as an example product. The final inspection might check for bent pins, scratches on the surface, proper placement of connectors, alignment of stickers, proper printing of text, distance between mechanisms, and more. Basically, any exceptions that occur during the build process need to be found. But then the list of criteria that needs to be looked up quickly becomes very long. Traditional rule-based systems struggle to handle all corner cases, and training new operators is difficult.
Why AI?
There are often too many rules to determine what a "pass" is. This makes it difficult for traditional machine vision systems to achieve good performance. The alternative is that manual inspection is time-consuming for many companies and difficult for new operators to make some ambiguous judgments. Traditional rule-based systems often do not have adequate performance, and manufacturers rely on operator judgment to help. There may be different lighting conditions, as well as high variations in defect location, shape, and texture. Often, a simple "good/bad" qualitative output is all that's needed. However, this can also be combined with traditional rule-based algorithms if desired.
benefit
With AI, setup is much easier. After collecting a large number of images to train a model, getting a system running usually requires far less development work than a rules-based system, especially using AI tools. With a suitable system, usually using a GPU, the check is much faster, on the order of milliseconds. If provided with good data, AI systems should also perform more reliably than humans and are a good way to standardize inspection procedures. The algorithm is typically trained on data provided by multiple operators, which can reduce human error. This helps mitigate human bias or fatigue that may arise from a single operator. In this example, AI can help manufacturers reduce out-of-box failures and improve inspection quality and throughput.
❷ PCB Inspection:
Background
PCB manufacturers need to inspect their circuit boards for any defects. It may be a bad solder joint, short circuit or other abnormality. AOI (Automated Optical Inspection) machines are usually used. However, since defects vary so much, it is difficult to handle all edge cases. And the performance of rule-based systems is not accurate enough, and manufacturers will ask operators to perform manual inspections, which is time-consuming and expensive.
Why AI?
It is difficult for traditional AOI systems to identify defects. It either overshoots or underperforms, causing a defective PCB to pass or a good PCB to fail. Similar to other situations, there are too many rules to determine a "good board". Depending on the application, AI can be used here to classify defects that vary widely in size and shape, such as short circuits, opens, faulty components, welding defects, etc.
Benefits
With artificial intelligence, manufacturers can improve the accuracy and quality of inspections. This helps reduce the number of defective PCBs passing inspection. It also saves the time and labor costs of any manually assisted inspections and increases throughput by automating tasks that take operators longer to complete.
The above is the detailed content of How to identify opportunities for AI in machine vision?. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
