Golang is a programming language that supports many operations and techniques, one of which is image rotation. In this article, we will learn how to use Golang to implement image rotation.
First of all, we need to prepare some necessary libraries and tools that allow us to easily operate on images. The following are the libraries we need to use:
- image: a library officially provided by Golang for image processing;
- image/draw: an image drawing library, mainly used for Images can be drawn and transformed;
- math: A library related to mathematical calculations that can be used to calculate rotation angles.
In addition to the above libraries, we also need a picture file as our sample. Here we choose a night scene picture and name it "night.jpg".
First, we need to open this image and use the image.Decode
function to decode it into an Image type:
file, err := os.Open("night.jpg") if err != nil { log.Fatal(err) } img, _, err := image.Decode(file) if err != nil { log.Fatal(err) }
Next, we can pass image The .NewRGBA
function creates a new RGBA image, and then draws the original image into this new image through image.Draw
. The purpose of this is to ensure that our modifications to the original image will not affect the original image itself:
rotated := image.NewRGBA(image.Rect(0, 0, img.Bounds().Dy(), img.Bounds().Dx())) draw.Draw(rotated, rotated.Bounds(), img, img.Bounds().Min, draw.Src)
During the process of image rotation, we need to specify an angle of rotation. We can use math.Pi
to obtain pi, and use the math.Sin
and math.Cos
functions to calculate the sin and cos values at different angles, Use this to calculate the rotation matrix.
angle := 45.0 radians := angle * math.Pi / 180.0 sin := math.Sin(radians) cos := math.Cos(radians)
We can then create an image.Affine
transformation matrix and apply it to our image to achieve the rotation. image.Affine
The matrix can help us perform transformations such as rotation, translation and scaling of the image in three-dimensional space:
matrix := affine.NewMatrix3( cos, sin, 0, -sin, cos, 0, 0, 0, 1, ) transform := affine.NewAffineTransform(matrix, rotated.Bounds()) transform.Invert() affineRect := transform.Bounds(rotated.Bounds()) result := image.NewRGBA(image.Rect(0, 0, affineRect.Dx(), affineRect.Dy())) draw.Draw(result, result.Bounds(), rotated, affineRect.Min, draw.Src) affineRect = transform.Bounds(rotated.Bounds())
Finally, we save the processed image to a local file:
out, err := os.Create("rotated.jpg") if err != nil { log.Fatal(err) } jpeg.Encode(out, result, &jpeg.Options{Quality: 100})
The complete code is as follows:
package main import ( "image" "image/draw" "image/jpeg" "log" "math" "github.com/disintegration/gift/affine" "os" ) func main() { file, err := os.Open("night.jpg") if err != nil { log.Fatal(err) } img, _, err := image.Decode(file) if err != nil { log.Fatal(err) } rotated := image.NewRGBA(image.Rect(0, 0, img.Bounds().Dy(), img.Bounds().Dx())) draw.Draw(rotated, rotated.Bounds(), img, img.Bounds().Min, draw.Src) angle := 45.0 radians := angle * math.Pi / 180.0 sin := math.Sin(radians) cos := math.Cos(radians) matrix := affine.NewMatrix3( cos, sin, 0, -sin, cos, 0, 0, 0, 1, ) transform := affine.NewAffineTransform(matrix, rotated.Bounds()) transform.Invert() affineRect := transform.Bounds(rotated.Bounds()) result := image.NewRGBA(image.Rect(0, 0, affineRect.Dx(), affineRect.Dy())) draw.Draw(result, result.Bounds(), rotated, affineRect.Min, draw.Src) affineRect = transform.Bounds(rotated.Bounds()) out, err := os.Create("rotated.jpg") if err != nil { log.Fatal(err) } jpeg.Encode(out, result, &jpeg.Options{Quality: 100}) }
So far, we have successfully implemented the image rotation function using Golang. Through the above code, we can not only rotate the image, but also perform other image operations. Golang provides many excellent image processing libraries, and we can combine them with Golang's programming language features to create more beautiful and practical applications.
The above is the detailed content of How to rotate golang pictures. For more information, please follow other related articles on the PHP Chinese website!

This article explains Go's package import mechanisms: named imports (e.g., import "fmt") and blank imports (e.g., import _ "fmt"). Named imports make package contents accessible, while blank imports only execute t

This article details efficient conversion of MySQL query results into Go struct slices. It emphasizes using database/sql's Scan method for optimal performance, avoiding manual parsing. Best practices for struct field mapping using db tags and robus

This article explains Beego's NewFlash() function for inter-page data transfer in web applications. It focuses on using NewFlash() to display temporary messages (success, error, warning) between controllers, leveraging the session mechanism. Limita

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

This article details efficient file writing in Go, comparing os.WriteFile (suitable for small files) with os.OpenFile and buffered writes (optimal for large files). It emphasizes robust error handling, using defer, and checking for specific errors.

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor
