


Let's talk about how to use MySQL to quickly implement a recommendation algorithm
This article brings you relevant knowledge about MySQL. It mainly introduces what a recommendation algorithm is, what problems this algorithm can help us solve, and how to use MySQL to implement a simple recommendation algorithm. Interested Let's take a look at it together, friends. I hope it will be helpful to everyone.
Using MySQL to implement a simple recommendation algorithm
The recommendation algorithm is a technology that is often encountered. Basically the problem solved is: if you like book A, then you'll probably like book B.
In this article, we use MySQL and disassemble and implement a simple recommendation algorithm based on data statistics.
First, create a data table of books that the user likes, which represents user_id likes book_id.
CREATE TABLE user_likes ( user_id INT NOT NULL, book_id VARCHAR(10) NOT NULL, PRIMARY KEY (user_id,book_id), UNIQUE KEY book_id (book_id, user_id) ); CREATE TABLE user_likes_similar ( user_id INT NOT NULL, liked_user_id INT NOT NULL, rank INT NOT NULL, KEY book_id (user_id, liked_user_id) );
Insert 4 pieces of test data
INSERT INTO user_likes VALUES (1, 'A'), (1, 'B'), (1, 'C'); INSERT INTO user_likes VALUES (2, 'A'), (2, 'B'), (2, 'C'), (2,'D'); INSERT INTO user_likes VALUES (3, 'X'), (3, 'Y'), (3, 'C'), (3,'Z'); INSERT INTO user_likes VALUES (4, 'W'), (4, 'Q'), (4, 'C'), (4,'Z');
means: user 1 likes A, B, C, user 2 likes A, B, C, D, user 3 likes X, Y ,C,Z, user 4 likes W,Q,C,Z.
Taking user 1 as an example to calculate recommended books, we need to calculate the similarity between user 1 and other users, and then sort according to the similarity.
Clear the similarity data table
DELETE FROM user_likes_similar WHERE user_id = 1;
Calculate the user similarity data table
INSERT INTO user_likes_similar SELECT 1 AS user_id, similar.user_id AS liked_user_id, COUNT(*) AS rank FROM user_likes target JOIN user_likes similar ON target.book_id= similar.book_id AND target.user_id != similar.user_id WHERE target.user_id = 1 GROUP BY similar.user_id ;
You can see that the found similarity result is
user_id, liked_user_id, rank 1, 2, 2 1, 3, 1 1, 4, 1
and then based on Sort by similarity, and take the top 10 books, which are the recommended books.
SELECT similar.book_id, SUM(user_likes_similar.rank) AS total_rank FROM user_likes_similar JOIN user_likes similar ON user_likes_similar.liked_user_id = similar.user_id LEFT JOIN user_likes target ON target.user_id = 1 AND target.book_id = similar.book_id WHERE user_likes_similar.user_id = 1 AND target.book_id IS NULL GROUP BY similar.book_id ORDER BY total_rank desc LIMIT 10;
[Recommended learning: mysql video tutorial]
The above is the detailed content of Let's talk about how to use MySQL to quickly implement a recommendation algorithm. For more information, please follow other related articles on the PHP Chinese website!

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.

The main reasons for poor MySQL query performance include not using indexes, wrong execution plan selection by the query optimizer, unreasonable table design, excessive data volume and lock competition. 1. No index causes slow querying, and adding indexes can significantly improve performance. 2. Use the EXPLAIN command to analyze the query plan and find out the optimizer error. 3. Reconstructing the table structure and optimizing JOIN conditions can improve table design problems. 4. When the data volume is large, partitioning and table division strategies are adopted. 5. In a high concurrency environment, optimizing transactions and locking strategies can reduce lock competition.

In database optimization, indexing strategies should be selected according to query requirements: 1. When the query involves multiple columns and the order of conditions is fixed, use composite indexes; 2. When the query involves multiple columns but the order of conditions is not fixed, use multiple single-column indexes. Composite indexes are suitable for optimizing multi-column queries, while single-column indexes are suitable for single-column queries.

To optimize MySQL slow query, slowquerylog and performance_schema need to be used: 1. Enable slowquerylog and set thresholds to record slow query; 2. Use performance_schema to analyze query execution details, find out performance bottlenecks and optimize.

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.