mysql has an index. There are usually two ways to access the row data of a database table in MySQL: 1. Sequential access, that is, performing a full table scan in the table and traversing it row by row from beginning to end until the target data that meets the conditions is found in the unordered row data; 2. Index access is to directly access the record rows in the table by traversing the index. The data structure of MySQL index can be divided into two types: BTree and Hash, and BTree can be divided into BTree and B Tree.
The operating environment of this tutorial: windows7 system, mysql8 version, Dell G3 computer.
What is a MySQL index?
Index is a special database structure, which is composed of one or more columns in the data table. It can be used to quickly query records with a specific value in the data table. This section will explain in detail the meaning, function, advantages and disadvantages of indexes.
Through the index, when querying data, you do not need to read all the information in the record, but only query the index column. Otherwise, the database system will read all information of each record for matching.
The index can be compared to the phonetic sequence of the Xinhua Dictionary. For example, if you want to look up the word "ku", if you don't use phonetic sequence, you need to find it page by page in the 400 pages of the dictionary. However, if you extract the pinyin to form a phonetic sequence, you only need to look it up directly from the phonetic table of more than 10 pages. This can save a lot of time.
Therefore, using indexes can greatly improve the query speed of the database and effectively improve the performance of the database system.
Why use indexes
The index is the relationship between the column values and the record rows established in a certain order based on one or several columns in the table. The correspondence table is essentially an ordered table describing the one-to-one correspondence between the column values of the index columns and the record rows in the original table.
Index is a very important database object in MySQL and is the basis of database performance tuning technology. It is often used to achieve fast retrieval of data.
In MySQL, there are usually two ways to access row data of a database table:
1) Sequential access
Sequential access is in the table Perform a full table scan, traversing row by row from beginning to end until you find target data that meets the conditions in the unordered row data.
Sequential access is relatively simple to implement, but when there is a large amount of data in the table, the efficiency is very low. For example, when searching for a small amount of data among tens of millions of data, using sequential access will traverse all the data, which will take a lot of time and will obviously affect the processing performance of the database.
2) Index access
Index access is a way to directly access record rows in the table by traversing the index.
The premise of using this method is to create an index on the table. After creating the index on the column, when searching for data, you can directly find the location of the corresponding record row based on the index on the column, so as to quickly find the data. The index stores pointers to the data values of the specified columns, sorting these pointers according to the specified sort order.
For example, in the student basic information table tb_students, if an index is established based on student_id, the system will create a mapping table from the index column to the actual record. When the user needs to find the data with student_id 12022, the system first finds the record on the student_id index, then directly finds the data row through the mapping table, and returns the row of data. Because the speed of scanning indexes is generally much greater than the speed of scanning actual data rows, using indexes can greatly improve the efficiency of the database.
In short, without using an index, MySQL must read the entire table starting from the first record until the relevant rows are found. The larger the table, the more time it takes to query the data. If the queried column in the table has an index, MySQL can quickly get to a location to search the data file without having to look at all the data, which will save a lot of time.
Classification of MYSQL indexes
1. Ordinary index and unique index
Ordinary index: The basic index type in MySQL, allowing duplicate values and null values to be inserted into the column that defines the index
-
Unique index: The value of the index column must be unique, but null values are allowed
- If it is a combined index, the combination of column values must be unique
- The primary key index is a special unique index and no null values are allowed
2. Single-column index and combined index
- Single-column index: an index only contains a single column, and a table can have multiple single-column indexes
- Combined index: in the table Indexes created on multiple field combinations
- The index will only be used when the left fields of these fields are used in the query conditions (leftmost prefix principle)
3. Full-text index
- The type of full-text index is fulltext
- supports full-text search of values on the columns that define the index, allowing duplicates to be inserted in these index columns Values and null values
- Full-text indexes can be created on columns of char, varchar and text types
4, spatial indexes
Spatial index is an index established for fields of spatial data type
There are 4 types of spatial data types in MySQL, namely Geometry, Point, and Linestring. And Polygon
MySQL is extended using the Spatial keyword, allowing you to create a spatial index using a syntax similar to creating a regular index
Create a spatial index Column does not allow null values and can only be created in MyISAM tables.
5. Prefix index
- When creating an index on char, varchar and text type columns, you can specify the length of the index column
MySQL index data structure
The data structure of MySQL index can be divided into two types: BTree and Hash, and BTree can be divided into BTree and B-Tree.
Hash: Use Hash table to store data, Key stores index columns, and Value stores row records or row disk addresses.
Hash only supports equal value queries ("=", "IN", "") and does not support any range queries (the reason is that there is no connection between each key of Hash) , Hash query efficiency is very high, and the time complexity is O(1).
BTree: Belongs to a multi-tree, also known as a multi-way balanced search tree.
Properties:
- The nodes of BTree store multiple elements (key value - address of data/child node)
- The key values of BTree nodes are arranged in non-descending order
- BTree All leaf nodes are located in the same layer (with the same depth)
- does not support fast search for range queries (each query must be traversed from the root node again)
- Storing data on all nodes will result in scattered disk data storage and reduced query efficiency
B Tree: On the basis of BTree, perform BTree Optimized: only leaf nodes will store key value-data, non-leaf nodes only store key values and addresses of child nodes; leaf nodes are connected using bidirectional pointers to form a bidirectional ordered linked list.
- ensures fast equality query and range query Search
- A single node stores more elements, reducing the number of IO queries
mysql video tutorial]
The above is the detailed content of Does mysql have indexes?. For more information, please follow other related articles on the PHP Chinese website!

如何在Window11上修复100%的磁盘使用率查找导致100%磁盘使用的有问题的应用程序或服务的直接方法是使用任务管理器。要打开任务管理器,请右键单击开始菜单并选择任务管理器。单击磁盘列标题,查看占用最多资源的内容。从那里开始,您将很好地了解从哪里开始。但是,问题可能比仅仅关闭应用程序或禁用服务更严重。继续阅读以查找问题的更多潜在原因以及如何解决这些问题。禁用SuperfetchSuperfetch功能(在Windows11中也称为SysMain)有助于通过访问预取文件来减少启动时

<h2>如何在Windows11上从搜索中隐藏文件和文件夹</h2><p>我们首先要看的是自定义Windows搜索文件的位置。通过跳过这些特定位置,您应该可以更快地看到结果,同时还可以隐藏您想要保护的任何文件。</p><p>如果要从Windows11上的搜索中排除文件和文件夹,请使用以下步骤:</p><ol&

如果您的搜索栏在Windows11中不起作用,有几种快速方法可以立即启动并运行!任何微软操作系统有时都可能遇到故障,最新的操作系统不能免除该规则。此外,正如Reddit上的用户u/zebra_head1所指出的那样,同样的错误出现在Windows11的22H2Build22621.1413上。用户抱怨切换任务栏搜索框的选项随机消失。因此,您必须为任何情况做好准备。为什么我无法在计算机上的搜索栏中键入内容?无法在计算机上键入可归因于不同的因素和过程。以下是您应该注意的一些事项:Ctfmon.

在Outlook中运行搜索和索引疑难解答您可以开始的更直接的修复之一是运行搜索和索引疑难解答。要在Windows11上运行疑难解答,请执行以下操作:单击开始按钮或按Windows键并从菜单中选择设置。当设置打开时,选择系统>疑难解答>其他疑难解答。在右侧向下滚动,找到SearchandIndexing,然后单击Run按钮。选择Outlook搜索不返回结果并继续屏幕上的说明。当您运行它时,疑难解答程序将自动识别并修复问题。运行疑难解答后,打开Outlook并查看搜索是否正常。如

如何通过索引提升PHP与MySQL的数据分组和数据聚合的效率?引言:PHP和MySQL是目前应用最广泛的编程语言和数据库管理系统,常常被用于构建web应用程序和处理大量数据。在处理大量数据时,数据分组和数据聚合是常见的操作,但如果不合理地设计和使用索引,这些操作可能会变得非常低效。本文将介绍如何通过索引来提升PHP与MySQL的数据分组和数据聚合的效率,并提

作为一种常用的关系型数据库,MySQL在今天的互联网应用中扮演着至关重要的角色。而在MySQL优化策略中,索引的使用更是至关重要。在MySQL中,索引是一种数据结构,用于快速定位数据中的特定行。使用索引可以大大提高查询效率,减少数据库处理数据的时间和资源。但不正确的索引使用方式,同样会导致数据库性能的下降。下面我们来深入剖析MySQL索引的优化策略,帮助您更

数组是以有组织的方式存储的同类数据元素的集合。数组中的每个数据元素都由一个索引值来标识。Python中的数组Python没有原生的数组数据结构。因此,我们可以使用列表数据结构来替代数组。[10,4,11,76,99]同时我们可以使用PythonNumpy模块来处理数组。由numpy模块定义的数组是−array([1,2,3,4])Python中的索引从0开始,因此可以使用各自的索引值来访问上述数组元素,如0、1、2、直到n-1。在下面的文章中,我们将看到在指定索引处插入多个元素的不同方法。输入输

如何在MySQL中使用索引来提高查询性能?引言:MySQL是一款常用的关系型数据库,随着数据量的增加,查询性能成为一个重要的考量因素。在MySQL中,索引是提高查询性能的关键因素之一。本文将介绍什么是索引,为什么使用索引可以提高查询性能,并给出一些在MySQL中使用索引的示例代码。一、什么是索引?索引是对数据库表中一个或多个列的值进行排序的一种结构,它可以快


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
