[Related recommendations: Python3 video tutorial]
np.where has two usages:
A kind of np.where(condition, x, y)
, that is, condition is the condition. When the condition is met, the output is x, if the condition is not met, the output is y. Directly enter the code:
a = np.arange(10) //array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(np.where(a > 5, 1, -1)) //array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
Above It is quite easy to understand, but the example on the official website is not easy to understand, as shown below:
np.where([[True,False], [True,True]], [[1,2], [3,4]], [[9,8], [7,6]]) // 输出 array([[1, 8], [3, 4]])
It can be understood in this way. The bool value in the first line represents the condition, which means whether to take the value. First, look at [ True, False], that is, the first True value means that the first row takes the value 1 in [1, 2] in the first row, instead of taking the 9 below, False means not taking the value in [1, 2] in the first row 2, and take the 8 in the second row [9, 8]. The following is the same as [3, 4].
For the convenience of understanding, let’s give another example:
a = 10 >>> np.where([[a > 5,a < 5], [a == 10,a == 7]], [["chosen","not chosen"], ["chosen","not chosen"]], [["not chosen","chosen"], ["not chosen","chosen"]]) //array([['chosen', 'chosen'], ['chosen', 'chosen']], dtype='<U10')
The first row a> 5True, then take the first value of the first row, a
After understanding the first method, let’s look at np.where The second method:
That is, np.where(condition), only the condition (condition), without x and y, then output the coordinates of the element that satisfies the condition (that is, non-0) (equivalent to numpy.nonzero) . The coordinates here are given in the form of a tuple. Usually, the output tuple contains several arrays, corresponding to the coordinates of each dimension of the elements that meet the conditions.
>>> a = np.array([2,4,6,8,10]) >>> np.where(a > 5) //(array([2, 3, 4]),) 返回索引值 >>> a[np.where(a > 5)] //array([ 6, 8, 10]) 返回元素值,即a[索引]
Give a code example that I encountered:
a = array([[0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [1., 0.], [0., 1.], [0., 1.], [0., 1.], [1., 0.], [1., 0.], [0., 1.], [0., 1.], [1., 0.], [0., 1.], [1., 0.], [0., 1.]]) np.where(a == 1) //(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, // 17, 18, 19], dtype=int64), // array([1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1], // dtype=int64))
The two array components returned indicate which row and which value is 1, so the first one in the result The first array array represents the row index, and the second array array represents the column index, which is the broken silver index of 1.
Attachment: np.where() multi-condition usage
1.np.where (condition,x,y) When there are three parameters in where, the first parameter represents the condition. When the condition is true, the where method returns x. When the condition is not true, where returns y
2.np.where( condition) When there is only one parameter in where, that parameter represents the condition. When the condition is true, where returns the coordinates of each element that meets the condition condition in the form of a tuple
3. More The condition is condition, & means and, | means or. For example, a = np.where((0Note that x, y must maintain the same size as a.
For example:
import numpy as np data = np.array([[0, 2, 0], [3, 1, 2], [0, 4, 0]]) new_data = np.where((data>= 0) & (data<=2), np.ones_like(data), np.zeros_like(data)) print(new_data)
Result:
[[1 1 1]
[0 1 1]
[1 0 1]]
It can be seen that as long as each element in data satisfies data>=0 and datathe value of the corresponding coordinates will be returned if it is satisfied, no If satisfied, the value of np.zeros_like(data) corresponding coordinates will be returned. Of course, x and y can be changed to other values, as long as they have the same size as the conditions.
【Related recommendations: Python3 video tutorial】
The above is the detailed content of Python detailed analysis of np.where() code application. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
