search
HomeDatabaseRedisWhat should I do if Redis cache exception occurs? How to solve?

What should I do if there is a Redis cache exception? The following article will introduce you to Redis cache exceptions and solutions. I hope it will be helpful to you!

What should I do if Redis cache exception occurs? How to solve?

Cache avalanche

Cache avalanche refers to a large area of ​​cache failure at the same time, so subsequent requests will fall to the database on, causing the database to collapse due to a large number of requests in a short period of time. [Related recommendations: Redis Video Tutorial]

Solution

1. Set the expiration time of cached data randomly. Prevent a large number of data from expiring at the same time.

2. Generally, when the amount of concurrency is not particularly large, the most commonly used solution is lock queuing.

3. Add a corresponding cache tag to each cached data and record whether the cache is invalid. If the cache tag is invalid, update the data cache.

Cache penetration

Cache penetration refers to data that is neither in the cache nor in the database, causing all requests to fall on the database, resulting in a short period of time in the database Crashed under a large number of requests.

Solution

1. Add verification at the interface layer, such as user authentication verification, id does basic verification, id

2. The data that cannot be obtained from the cache is not obtained in the database. At this time, the key-value pair can also be written as key-null, and the cache validity time can be set to be short. point, such as 30 seconds (setting too long will make it unusable under normal circumstances). This can prevent attacking users from repeatedly using the same ID to brute force attacks;

3. Use a Bloom filter to hash all possible data into a large enough bitmap. Data that must not exist will be It is intercepted by this bitmap, thereby avoiding query pressure on the underlying storage system.

Additional

The ultimate use of space is Bitmap and Bloom Filter.

Bitmap: The typical one is the hash table

The disadvantage is that Bitmap can only record 1 bit of information for each element. If you want to complete additional functions, I am afraid that only It can be accomplished by sacrificing more space and time.

Bloom filter (recommended)

introduces k(k>1)k(k>1) independent hash functions to ensure that Under a given space and misjudgment rate, the process of element weight determination is completed.

Its advantage is that space efficiency and query time are much higher than the general algorithm, but its disadvantage is that it has a certain misrecognition rate and difficulty in deletion.

The core idea of ​​the Bloom-Filter algorithm is to use multiple different Hash functions to resolve "conflicts".

Hash has a conflict (collision) problem. The values ​​of two URLs obtained by using the same Hash may be the same. In order to reduce conflicts, we can introduce several more hashes. If we find that an element is not in the set through one of the hash values, then the element is definitely not in the set. Only when all Hash functions tell us that the element is in the set can we be sure that the element exists in the set. This is the basic idea of ​​Bloom-Filter.

Bloom-Filter is generally used to determine whether an element exists in a large data collection.

Cache breakdown

Cache breakdown refers to data that is not in the cache but exists in the database (usually the cache time has expired). At this time, due to the special nature of concurrent users Many times, the data is not read in the cache at the same time, and the data is fetched from the database at the same time, causing the pressure on the database to increase instantly and causing excessive pressure. Different from cache avalanche, cache breakdown refers to concurrent query of the same data. Cache avalanche means that different data have expired, and a lot of data cannot be found, so the database is searched.

Solution

1. Set hotspot data to never expire

2. Add mutex lock, mutex lock

Cache preheating

Cache preheating means loading relevant cache data directly into the cache system after the system goes online. In this way, you can avoid the problem of querying the database first and then caching the data when the user requests it! Users directly query cached data that has been preheated!

Solution

1. Directly write a cache refresh page, and do it manually when going online;

2. The amount of data is not large, you can Automatically load when the project starts;

3. Refresh the cache regularly;

Cache downgrade

When the number of visits increases sharply and service problems occur ( When the response time is slow or non-responsive) or non-core services affect the performance of the core process, it is still necessary to ensure that the service is still available, even if the service is compromised. The system can automatically downgrade based on some key data, or configure switches to achieve manual downgrade.

The ultimate goal of cache downgrade is to ensure that core services are available, even if they are lossy. And some services cannot be downgraded (such as adding to shopping cart, checkout).

Before downgrading, the system should be sorted out to see if the system can lose soldiers and retain commanders; thereby sorting out what must be protected to the death and what can be downgraded; for example, you can refer to the log level setting plan:

1. General: For example, some services occasionally time out due to network jitter or the service is online, and can be automatically downgraded;

2. Warning: Some services have fluctuating success rates within a period of time (such as 95~ 100%), you can automatically downgrade or manually downgrade, and send an alarm;

3. Error: For example, the availability rate is lower than 90%, or the database connection pool is exhausted, or the number of visits suddenly increases. When it reaches the maximum threshold that the system can withstand, it can be automatically downgraded or manually downgraded according to the situation;

4. Serious error: For example, if the data is wrong due to special reasons, emergency manual downgrade is required.

The purpose of service downgrade is to prevent Redis service failure from causing avalanche problems in the database. Therefore, for unimportant cached data, a service downgrade strategy can be adopted. For example, a common approach is that if there is a problem with Redis, instead of querying the database, it directly returns the default value to the user.

Cache hotspot key

When a Key in the cache (such as a promotional product) expires at a certain point in time, the Key will be cached at this point in time. There are a large number of concurrent requests. When these requests find that the cache has expired, they usually load data from the back-end DB and reset it to the cache. At this time, large concurrent requests may instantly overwhelm the back-end DB.

Solution

Lock the cache query. If the KEY does not exist, lock it, then check the DB into the cache, and then unlock it; if other processes find that there is a lock Just wait, and then return the data after unlocking or enter the DB query

For more programming-related knowledge, please visit: Programming Video! !

The above is the detailed content of What should I do if Redis cache exception occurs? How to solve?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:掘金社区. If there is any infringement, please contact admin@php.cn delete
Why Use Redis? Benefits and AdvantagesWhy Use Redis? Benefits and AdvantagesApr 14, 2025 am 12:07 AM

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,

Understanding NoSQL: Key Features of RedisUnderstanding NoSQL: Key Features of RedisApr 13, 2025 am 12:17 AM

Key features of Redis include speed, flexibility and rich data structure support. 1) Speed: Redis is an in-memory database, and read and write operations are almost instantaneous, suitable for cache and session management. 2) Flexibility: Supports multiple data structures, such as strings, lists, collections, etc., which are suitable for complex data processing. 3) Data structure support: provides strings, lists, collections, hash tables, etc., which are suitable for different business needs.

Redis: Identifying Its Primary FunctionRedis: Identifying Its Primary FunctionApr 12, 2025 am 12:01 AM

The core function of Redis is a high-performance in-memory data storage and processing system. 1) High-speed data access: Redis stores data in memory and provides microsecond-level read and write speed. 2) Rich data structure: supports strings, lists, collections, etc., and adapts to a variety of application scenarios. 3) Persistence: Persist data to disk through RDB and AOF. 4) Publish subscription: Can be used in message queues or real-time communication systems.

Redis: A Guide to Popular Data StructuresRedis: A Guide to Popular Data StructuresApr 11, 2025 am 12:04 AM

Redis supports a variety of data structures, including: 1. String, suitable for storing single-value data; 2. List, suitable for queues and stacks; 3. Set, used for storing non-duplicate data; 4. Ordered Set, suitable for ranking lists and priority queues; 5. Hash table, suitable for storing object or structured data.

How to implement redis counterHow to implement redis counterApr 10, 2025 pm 10:21 PM

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

How to use the redis command lineHow to use the redis command lineApr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

How to build the redis cluster modeHow to build the redis cluster modeApr 10, 2025 pm 10:15 PM

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to read redis queueHow to read redis queueApr 10, 2025 pm 10:12 PM

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft