search
HomeBackend DevelopmentPython TutorialPython homework: histogram, equalization, Gaussian filtering
Python homework: histogram, equalization, Gaussian filteringMar 10, 2021 am 10:41 AM
pythonequalizationHistogram

Python homework: histogram, equalization, Gaussian filtering

Python histogram, equalization, Gaussian filtering

  • Test original image
  • Histogram
    • Basic principle
    • matplotlib library draws histogram
    • RGB three-channel histogram
  • Histogram equalization
    • Basic principle
    • PCV library completes histogram equalization
  • Gaussian filter
    • Basic principles
    • Opencv Gaussian filter implementation

##(Free learning recommendation: python video tutorial

Test original image

Python homework: histogram, equalization, Gaussian filtering

Python homework: histogram, equalization, Gaussian filtering

Histogram

Basic Principles

What is a histogram: Histogram of an image Describes the relationship between the gray level of an image and the number of times (frequency) that the corresponding gray level appears in the image. Through the histogram, image segmentation, retrieval, classification and other operations can be performed.

hist function of the matplotlib library : The hist function can help draw histograms. It has many parameters, the first two parameters are used here: x, bins. The x parameter represents a one-dimensional array of pixels. If the array is more than one dimension, it can be flattened into one dimension using the flatten method. Generally speaking, reading a picture is a two-dimensional matrix, which requires flattening. The bins parameter indicates the number of columns to display the histogram

Assume there is a two-dimensional array img=[[159,120,130],[100,84,92],[168,150,212]]. The number represents the pixel value of the image. After flattening, img=[159,120,130,100,84,92,168,150,212]. The histogram drawn using the hist function is as shown below. The horizontal axis represents the pixel value, and the vertical axis represents the frequency of occurrence of the pixel value


Python homework: histogram, equalization, Gaussian filtering
cv2.calcHist() provided by opencv draws a histogram: The calcHist function needs to pass in the read Picture image; the channels of the image, if it is a grayscale image channels=0, if it is the r, g, and b channels respectively, then 0, 1, and 2 are passed in.

matplotlib library for drawing histograms

Textbook code

from PIL import Imagefrom pylab import *# 解决中文乱码plt.rcParams['font.sans-serif'] = 'SimHei'plt.rcParams['axes.unicode_minus'] = False#im = array(Image.open('headimage.jpeg').convert('L'))  # 打开图像,并转成灰度图像print(im)figure()subplot(121)gray()contour(im, origin='image')  #画图axis('equal')  # 自动调整比例axis('off')  # 去除x  y轴上的刻度title(u'图像轮廓')subplot(122)# flatten()函数可以执行展平操作,返回一个一维数组hist(im.flatten(), 128)print(im.flatten())title(u'图像直方图')plt.xlim([0,260])plt.ylim([0,11000])show()
Running results


Python homework: histogram, equalization, Gaussian filtering

RGB Three-channel histogram

Code implementation

import cv2from matplotlib import pyplot as plt
img = cv2.imread('headimage.jpeg',1)color = ('b','g','r')for i,col in enumerate(color):
    histr = cv2.calcHist([img],[i],None,[256],[0,256])
    plt.plot(histr,color = col)
    plt.xlim([0,256])plt.show()
Running results


Python homework: histogram, equalization, Gaussian filtering

Histogram equalization

Basic Principle

What is histogram equalization: Histogram equalization uses the histogram of the image to adjust the contrast, which is a type of image enhancement. method. Intuitively, from the picture, the equalized picture has stronger contrast, is clearer, and has more obvious features; from the histogram, the frequency of the histogram gray value of the equalized picture is more uniform.

How to equalize the histogram

    Histogram equalization must first read a picture img and calculate the histogram value of the picture imhist (You can use the histogram function).
  • After getting the value of the histogram, you need to calculate the cumulative histogram cdf of the histogram (cdf[i] is equal to the sum of imhist[0] to imhist[i], which can be obtained directly using the cumsum function).
  • The last step is to equalize the histogram. For the pixel value img[i, j] in the
  • i row and j# column of the picture, use the formula img[i, j] = cdf[ img[i,j] ] / (m*n)*255 is calculated to obtain the equalized pixel value, and then the histogram of the equalized picture is calculated to obtain the equalized histogram. Figure

Use the histeq function of the PCV library to equalize : Pass in the image im and return the equalized histogram and cumulative histogram cdf.

PCV library completes histogram equalization

Textbook code

# -*- coding: utf-8 -*-from PIL import Imagefrom pylab import *from PCV.tools import imtools# 添加中文字体支持from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14)im = array(Image.open('Python homework: histogram, equalization, Gaussian filtering').convert('L'))  # 打开图像,并转成灰度图像im2, cdf = imtools.histeq(im)figure()subplot(2, 2, 1)axis('off')gray()title(u'原始图像', fontproperties=font)imshow(im)subplot(2, 2, 2)axis('off')title(u'直方图均衡化后的图像', fontproperties=font)imshow(im2)subplot(2, 2, 3)axis('off')title(u'原始直方图', fontproperties=font)hist(im.flatten(), 128, density=True)subplot(2, 2, 4)axis('off')title(u'均衡化后的直方图', fontproperties=font)hist(im2.flatten(), 128, density=True)show()
Running results


Python homework: histogram, equalization, Gaussian filtering can be obtained by running the results , because the original image is overall darker (black), so the histogram of the original image appears more frequently in low pixels and less frequently in high pixels. After histogram equalization, the image as a whole becomes brighter. Observing the histogram, it is found that the frequency of low pixels has decreased, while the frequency of high pixels has increased, giving the image a more obvious contrast

Gaussian Filtering

##Basic Principles

What is Gaussian filtering

: Gaussian filtering is a linear smoothing filter that uses normal distribution for Image processing is suitable for eliminating Gaussian noise, and can blur the image to smooth the image and produce a blurred effect on the image.

高斯滤波原理:高斯滤波是用户指定一个模板,然后通过这个模板对图像进行卷积,所进行的卷积操作就是将模板中心周围的像素值进行加权平均后替换模板中心的像素值
Python homework: histogram, equalization, Gaussian filtering

opencv高斯滤波实现

代码实现

import cv2import matplotlib.pyplot as plt

im=cv2.imread("Python homework: histogram, equalization, Gaussian filtering")# 高斯滤波img_Guassian = cv2.GaussianBlur(im,(5,5),0)plt.subplot(121)plt.imshow(im)plt.subplot(122)plt.imshow(img_Guassian)plt.show()

Python homework: histogram, equalization, Gaussian filtering
Python homework: histogram, equalization, Gaussian filtering
从Python homework: histogram, equalization, Gaussian filtering中可以看出,经过高斯滤波后的图像变得模糊了,边缘变得没有那么明显,图像变得平滑

相关免费学习推荐:python教程(视频)

The above is the detailed content of Python homework: histogram, equalization, Gaussian filtering. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:CSDN. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)