search
HomeBackend DevelopmentPython TutorialWhat are the built-in functions of Python?

What are the built-in functions of Python?

Mar 09, 2021 pm 04:25 PM
python built-in functions

Python built-in functions include: abs, divmod, max, min, pow, round, sum, bool, int, float, complex, str, bytearray, bytes, memoryview, ord, oct, tuple, map, etc. .

What are the built-in functions of Python?

The operating environment of this tutorial: Windows 7 system, Python 3 version, Dell G3 computer.

Built-in function classification:

  • Mathematical operations (7)

  • Type conversion (24 items)

  • Sequence operations (8 items)

  • Object operations (7 items)

  • Reflection operations (8 items)

  • Variable operations (2 items)

  • Interactive operations (2 items)

  • File operation (1)

  • Compilation and execution (4)

  • Decorator (3 )

Mathematical operations

abs: Find the absolute value of a numerical value

>>> abs(-2)
2

pmod: Returns the quotient and remainder of two values

>>> pmod(5,2)
(2, 1)
>> pmod(5.5,2)
(2.0, 1.5)

max: Returns the maximum value among the elements in the iterable object or the maximum value of all parameters

>>> max(1,2,3) # 传入3个参数 取3个中较大者
3
>>> max('1234') # 传入1个可迭代对象,取其最大元素值
'4'
>>> max(-1,0) # 数值默认去数值较大者
0
>>> max(-1,0,key = abs) # 传入了求绝对值函数,则参数都会进行求绝对值后再取较大者
-1

min: Returns the minimum value among the elements in the iterable object or the minimum value of all parameters

>>> min(1,2,3) # 传入3个参数 取3个中较小者
1
>>> min('1234') # 传入1个可迭代对象,取其最小元素值
'1'
>>> min(-1,-2) # 数值默认去数值较小者
-2
>>> min(-1,-2,key = abs)  # 传入了求绝对值函数,则参数都会进行求绝对值后再取较小者
-1

pow: Returns two values The power operation value or its modulo value to the specified integer

>>> pow(2,3)
>>> 2**3

>>> pow(2,3,5)
>>> pow(2,3)%5

round: Rounding evaluation of floating point numbers

>>> round(1.1314926,1)
1.1
>>> round(1.1314926,5)
1.13149

sum: Right Summing each element in an iterable whose element type is numeric

# 传入可迭代对象
>>> sum((1,2,3,4))
10
# 元素类型必须是数值型
>>> sum((1.5,2.5,3.5,4.5))
12.0
>>> sum((1,2,3,4),-10)
0

Type conversion

bool: Create a new Boolean value based on the logical value of the passed in parameters

>>> bool() #未传入参数
False
>>> bool(0) #数值0、空序列等值为False
False
>>> bool(1)
True

int: Create a new integer based on the passed in parameters

>>> int() #不传入参数时,得到结果0。
0
>>> int(3)
3
>>> int(3.6)
3

float: Create a new floating point number based on the passed parameters

>>> float() #不提供参数的时候,返回0.0
0.0
>>> float(3)
3.0
>>> float('3')
3.0

complex: Create a new complex number based on the passed parameters

>>> complex() #当两个参数都不提供时,返回复数 0j。
0j
>>> complex('1+2j') #传入字符串创建复数
(1+2j)
>>> complex(1,2) #传入数值创建复数
(1+2j)

str: ​​Returns the string representation of an object (to the user)

>>> str()
''
>>> str(None)
'None'
>>> str('abc')
'abc'
>>> str(123)
'123'

bytearray: Creates an object based on the parameters passed in New byte array

>>> bytearray('中文','utf-8')
bytearray(b'\xe4\xb8\xad\xe6\x96\x87')

bytes: Creates a new immutable byte array based on the parameters passed in

>>> bytes('中文','utf-8')
b'\xe4\xb8\xad\xe6\x96\x87'

memoryview: Based on The passed-in parameters create a new memory view object

>>> v = memoryview(b'abcefg')
>>> v[1]
98
>>> v[-1]
103

ord: Returns the integer corresponding to the Unicode character

>>> ord('a')
97

chr: Returns the integer Corresponding Unicode characters

>>> chr(97) #参数类型为整数
'a'

bin: Convert integers to binary strings

>>> bin(3) 
'0b11'

oct: Convert integers to octal Number string

>>> oct(10)
'0o12'

hex: Convert the integer into a hexadecimal string

>>> hex(15)
'0xf'

tuple: Create a new one based on the passed in parameters Tuple of

>>> tuple() #不传入参数,创建空元组
()
>>> tuple('121') #传入可迭代对象。使用其元素创建新的元组
('1', '2', '1')

list: Create a new list based on the parameters passed in

>>>list() # 不传入参数,创建空列表
[] 
>>> list('abcd') # 传入可迭代对象,使用其元素创建新的列表
['a', 'b', 'c', 'd']

dict: Create a new list based on the parameters passed in New dictionary

>>> dict() # 不传入任何参数时,返回空字典。
{}
>>> dict(a = 1,b = 2) #  可以传入键值对创建字典。
{'b': 2, 'a': 1}
>>> dict(zip(['a','b'],[1,2])) # 可以传入映射函数创建字典。
{'b': 2, 'a': 1}
>>> dict((('a',1),('b',2))) # 可以传入可迭代对象创建字典。
{'b': 2, 'a': 1}

set: Create a new set based on the passed parameters

>>>set() # 不传入参数,创建空集合
set()
>>> a = set(range(10)) # 传入可迭代对象,创建集合
>>> a
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

frozenset: Create a new set based on the passed parameters New immutable collection

>>> a = frozenset(range(10))
>>> a
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

enumerate: Create an enumeration object based on an iterable object

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1)) #指定起始值
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

range: Create an enumeration based on the parameters passed in New range object

>>> a = range(10)
>>> b = range(1,10)
>>> c = range(1,10,3)
>>> a,b,c # 分别输出a,b,c
(range(0, 10), range(1, 10), range(1, 10, 3))
>>> list(a),list(b),list(c) # 分别输出a,b,c的元素
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 4, 7])
>>>

iter: Create a new iterable object based on the passed in parameters

>>> a = iter('abcd') #字符串序列
>>> a
<str_iterator>
>>> next(a)
'a'
>>> next(a)
'b'
>>> next(a)
'c'
>>> next(a)
'd'
>>> next(a)
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    next(a)
StopIteration</module></pyshell></str_iterator>

slice: Based on the passed in parameters Parameters create a new slice object

>>> c1 = slice(5) # 定义c1
>>> c1
slice(None, 5, None)
>>> c2 = slice(2,5) # 定义c2
>>> c2
slice(2, 5, None)
>>> c3 = slice(1,10,3) # 定义c3
>>> c3
slice(1, 10, 3)

super: Create a new proxy object of the relationship between subclass and parent class based on the passed parameters

#定义父类A
>>> class A(object):
    def __init__(self):
        print('A.__init__')

#定义子类B,继承A
>>> class B(A):
    def __init__(self):
        print('B.__init__')
        super().__init__()

#super调用父类方法
>>> b = B()
B.__init__
A.__init__

object: Create a new object object

>>> a = object()
>>> a.name = 'kim' # 不能设置属性
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    a.name = 'kim'
AttributeError: 'object' object has no attribute 'name'</module></pyshell>

Sequence operation

all: Determine iterable objects Whether each element of the iterable object has a True value

>>> all([1,2]) #列表中每个元素逻辑值均为True,返回True
True
>>> all([0,1,2]) #列表中0的逻辑值为False,返回False
False
>>> all(()) #空元组
True
>>> all({}) #空字典
True

any: Determine whether the element of the iterable object has an element with a True value>>> any ([0,1,2]) #If one of the list elements is True, then True is returned

True
>>> any([0,0]) #列表元素全部为False,则返回False
False
>>> any([]) #空列表
False
>>> any({}) #空字典
False

filter: Use the specified method to filter the elements of the iterable object

>>> a = list(range(1,10)) #定义序列
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> def if_odd(x): #定义奇数判断函数
    return x%2==1

>>> list(filter(if_odd,a)) #筛选序列中的奇数
[1, 3, 5, 7, 9]

map:使用指定方法去作用传入的每个可迭代对象的元素,生成新的可迭代对象

>>> a = map(ord,'abcd')
>>> a
<map>
>>> list(a)
[97, 98, 99, 100]</map>

next:返回可迭代对象中的下一个元素值

>>> a = iter('abcd')
>>> next(a)
'a'
>>> next(a)
'b'
>>> next(a)
'c'
>>> next(a)
'd'
>>> next(a)
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    next(a)
StopIteration

#传入default参数后,如果可迭代对象还有元素没有返回,则依次返回其元素值,如果所有元素已经返回,则返回default指定的默认值而不抛出StopIteration 异常
>>> next(a,'e')
'e'
>>> next(a,'e')
'e'</module></pyshell>

reversed:反转序列生成新的可迭代对象

>>> a = reversed(range(10)) # 传入range对象
>>> a # 类型变成迭代器
<range_iterator>
>>> list(a)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]</range_iterator>

sorted:对可迭代对象进行排序,返回一个新的列表

>>> a = ['a','b','d','c','B','A']
>>> a
['a', 'b', 'd', 'c', 'B', 'A']

>>> sorted(a) # 默认按字符ascii码排序
['A', 'B', 'a', 'b', 'c', 'd']

>>> sorted(a,key = str.lower) # 转换成小写后再排序,'a'和'A'值一样,'b'和'B'值一样
['a', 'A', 'b', 'B', 'c', 'd']

zip:聚合传入的每个迭代器中相同位置的元素,返回一个新的元组类型迭代器

>>> x = [1,2,3] #长度3
>>> y = [4,5,6,7,8] #长度5
>>> list(zip(x,y)) # 取最小长度3
[(1, 4), (2, 5), (3, 6)]

对象操作

help:返回对象的帮助信息

>>> help(str) 
Help on class str in module builtins:

class str(object)
 |  str(object='') -> str
 |  str(bytes_or_buffer[, encoding[, errors]]) -> str
 |  
 |  Create a new string object from the given object. If encoding or
 |  errors is specified, then the object must expose a data buffer
 |  that will be decoded using the given encoding and error handler.
 |  Otherwise, returns the result of object.__str__() (if defined)
 |  or repr(object).
 |  encoding defaults to sys.getdefaultencoding().
 |  errors defaults to 'strict'.
 |  
 |  Methods defined here:
 |  
 |  __add__(self, value, /)
 |      Return self+value.
 |  
  ***************************

dir:返回对象或者当前作用域内的属性列表

>>> import math
>>> math
<module>
>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']</module>

id:返回对象的唯一标识符

>>> a = 'some text'
>>> id(a)
69228568

hash:获取对象的哈希值

>>> hash('good good study')
1032709256

type:返回对象的类型,或者根据传入的参数创建一个新的类型

>>> type(1) # 返回对象的类型
<class>

#使用type函数创建类型D,含有属性InfoD
>>> D = type('D',(A,B),dict(InfoD='some thing defined in D'))
>>> d = D()
>>> d.InfoD
 'some thing defined in D'</class>

len:返回对象的长度

>>> len('abcd') # 字符串
>>> len(bytes('abcd','utf-8')) # 字节数组
>>> len((1,2,3,4)) # 元组
>>> len([1,2,3,4]) # 列表
>>> len(range(1,5)) # range对象
>>> len({'a':1,'b':2,'c':3,'d':4}) # 字典
>>> len({'a','b','c','d'}) # 集合
>>> len(frozenset('abcd')) #不可变集合

ascii:返回对象的可打印表字符串表现方式

>>> ascii(1)
'1'
>>> ascii('&')
"'&'"
>>> ascii(9000000)
'9000000'
>>> ascii('中文') #非ascii字符
"'\\u4e2d\\u6587'"

format:格式化显示值

#字符串可以提供的参数 's' None
>>> format('some string','s')
'some string'
>>> format('some string')
'some string'

#整形数值可以提供的参数有 'b' 'c' 'd' 'o' 'x' 'X' 'n' None
>>> format(3,'b') #转换成二进制
'11'
>>> format(97,'c') #转换unicode成字符
'a'
>>> format(11,'d') #转换成10进制
'11'
>>> format(11,'o') #转换成8进制
'13'
>>> format(11,'x') #转换成16进制 小写字母表示
'b'
>>> format(11,'X') #转换成16进制 大写字母表示
'B'
>>> format(11,'n') #和d一样
'11'
>>> format(11) #默认和d一样
'11'

#浮点数可以提供的参数有 'e' 'E' 'f' 'F' 'g' 'G' 'n' '%' None
>>> format(314159267,'e') #科学计数法,默认保留6位小数
'3.141593e+08'
>>> format(314159267,'0.2e') #科学计数法,指定保留2位小数
'3.14e+08'
>>> format(314159267,'0.2E') #科学计数法,指定保留2位小数,采用大写E表示
'3.14E+08'
>>> format(314159267,'f') #小数点计数法,默认保留6位小数
'314159267.000000'
>>> format(3.14159267000,'f') #小数点计数法,默认保留6位小数
'3.141593'
>>> format(3.14159267000,'0.8f') #小数点计数法,指定保留8位小数
'3.14159267'
>>> format(3.14159267000,'0.10f') #小数点计数法,指定保留10位小数
'3.1415926700'
>>> format(3.14e+1000000,'F')  #小数点计数法,无穷大转换成大小字母
'INF'

#g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4>> format(0.00003141566,'.1g') #p=1,exp=-5 ==》 -4>> format(0.00003141566,'.2g') #p=1,exp=-5 ==》 -4>> format(0.00003141566,'.3g') #p=1,exp=-5 ==》 -4>> format(0.00003141566,'.3G') #p=1,exp=-5 ==》 -4>> format(3.1415926777,'.1g') #p=1,exp=0 ==》 -4>> format(3.1415926777,'.2g') #p=1,exp=0 ==》 -4>> format(3.1415926777,'.3g') #p=1,exp=0 ==》 -4>> format(0.00003141566,'.1n') #和g相同
'3e-05'
>>> format(0.00003141566,'.3n') #和g相同
'3.14e-05'
>>> format(0.00003141566) #和g相同
'3.141566e-05'

vars:返回当前作用域内的局部变量和其值组成的字典,或者返回对象的属性列表

#作用于类实例
>>> class A(object):
    pass

>>> a.__dict__
{}
>>> vars(a)
{}
>>> a.name = 'Kim'
>>> a.__dict__
{'name': 'Kim'}
>>> vars(a)
{'name': 'Kim'}

反射操作

__import__:动态导入模块

index = __import__('index')
index.sayHello()

isinstance:判断对象是否是类或者类型元组中任意类元素的实例

>>> isinstance(1,int)
True
>>> isinstance(1,str)
False
>>> isinstance(1,(int,str))
True

issubclass:判断类是否是另外一个类或者类型元组中任意类元素的子类

>>> issubclass(bool,int)
True
>>> issubclass(bool,str)
False

>>> issubclass(bool,(str,int))
True

hasattr:检查对象是否含有属性

#定义类A
>>> class Student:
    def __init__(self,name):
        self.name = name

        
>>> s = Student('Aim')
>>> hasattr(s,'name') #a含有name属性
True
>>> hasattr(s,'age') #a不含有age属性
False

getattr:获取对象的属性值

#定义类Student
>>> class Student:
    def __init__(self,name):
        self.name = name

>>> getattr(s,'name') #存在属性name
'Aim'

>>> getattr(s,'age',6) #不存在属性age,但提供了默认值,返回默认值

>>> getattr(s,'age') #不存在属性age,未提供默认值,调用报错
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    getattr(s,'age')
AttributeError: 'Stduent' object has no attribute 'age'</module></pyshell>

setattr:设置对象的属性值

>>> class Student:
    def __init__(self,name):
        self.name = name

        
>>> a = Student('Kim')
>>> a.name
'Kim'
>>> setattr(a,'name','Bob')
>>> a.name
'Bob'

delattr:删除对象的属性

#定义类A
>>> class A:
    def __init__(self,name):
        self.name = name
    def sayHello(self):
        print('hello',self.name)

#测试属性和方法
>>> a.name
'小麦'
>>> a.sayHello()
hello 小麦

#删除属性
>>> delattr(a,'name')
>>> a.name
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    a.name
AttributeError: 'A' object has no attribute 'name'</module></pyshell>

callable:检测对象是否可被调用

>>> class B: #定义类B
    def __call__(self):
        print('instances are callable now.')

        
>>> callable(B) #类B是可调用对象
True
>>> b = B() #调用类B
>>> callable(b) #实例b是可调用对象
True
>>> b() #调用实例b成功
instances are callable now.

变量操作

globals:返回当前作用域内的全局变量和其值组成的字典

>>> globals()
{'__spec__': None, '__package__': None, '__builtins__': <module>, '__name__': '__main__', '__doc__': None, '__loader__': <class>}
>>> a = 1
>>> globals() #多了一个a
{'__spec__': None, '__package__': None, '__builtins__': <module>, 'a': 1, '__name__': '__main__', '__doc__': None, '__loader__': <class>}</class></module></class></module>

locals:返回当前作用域内的局部变量和其值组成的字典

>>> def f():
    print('before define a ')
    print(locals()) #作用域内无变量
    a = 1
    print('after define a')
    print(locals()) #作用域内有一个a变量,值为1

    
>>> f
<function>
>>> f()
before define a 
{} 
after define a
{'a': 1}</function>

交互操作

print:向标准输出对象打印输出

>>> print(1,2,3)
1 2 3
>>> print(1,2,3,sep = '+')
1+2+3
>>> print(1,2,3,sep = '+',end = '=?')
1+2+3=?

input:读取用户输入值

>>> s = input('please input your name:')
please input your name:Ain
>>> s
'Ain'

文件操作

open:使用指定的模式和编码打开文件,返回文件读写对象

# t为文本读写,b为二进制读写
>>> a = open('test.txt','rt')
>>> a.read()
'some text'
>>> a.close()

编译执行

compile:将字符串编译为代码或者AST对象,使之能够通过exec语句来执行或者eval进行求值

>>> #流程语句使用exec
>>> code1 = 'for i in range(0,10): print (i)'
>>> compile1 = compile(code1,'','exec')
>>> exec (compile1)
0
1
2
3
4
5
6
7
8
9


>>> #简单求值表达式用eval
>>> code2 = '1 + 2 + 3 + 4'
>>> compile2 = compile(code2,'','eval')
>>> eval(compile2)
10

eval:执行动态表达式求值

>>> eval('1+2+3+4')
10

exec:执行动态语句块

>>> exec('a=1+2') #执行语句
>>> a
3

repr:返回一个对象的字符串表现形式(给解释器)

>>> a = 'some text'
>>> str(a)
'some text'
>>> repr(a)
"'some text'"

装饰器

property:标示属性的装饰器

>>> class C:
    def __init__(self):
        self._name = ''
    @property
    def name(self):
        """i'm the 'name' property."""
        return self._name
    @name.setter
    def name(self,value):
        if value is None:
            raise RuntimeError('name can not be None')
        else:
            self._name = value

            
>>> c = C()

>>> c.name # 访问属性
''
>>> c.name = None # 设置属性时进行验证
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    c.name = None
  File "<pyshell>", line 11, in name
    raise RuntimeError('name can not be None')
RuntimeError: name can not be None

>>> c.name = 'Kim' # 设置属性
>>> c.name # 访问属性
'Kim'

>>> del c.name # 删除属性,不提供deleter则不能删除
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    del c.name
AttributeError: can't delete attribute
>>> c.name
'Kim'</module></pyshell></pyshell></module></pyshell>

classmethod:标示方法为类方法的装饰器

>>> class C:
    @classmethod
    def f(cls,arg1):
        print(cls)
        print(arg1)

        
>>> C.f('类对象调用类方法')
<class>
类对象调用类方法

>>> c = C()
>>> c.f('类实例对象调用类方法')
<class>
类实例对象调用类方法</class></class>

staticmethod:标示方法为静态方法的装饰器

# 使用装饰器定义静态方法
>>> class Student(object):
    def __init__(self,name):
        self.name = name
    @staticmethod
    def sayHello(lang):
        print(lang)
        if lang == 'en':
            print('Welcome!')
        else:
            print('你好!')

            
>>> Student.sayHello('en') #类调用,'en'传给了lang参数
en
Welcome!

>>> b = Student('Kim')
>>> b.sayHello('zh')  #类实例对象调用,'zh'传给了lang参数
zh
你好

更多编程相关知识,请访问:编程视频!!

The above is the detailed content of What are the built-in functions of Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.