search
HomeBackend DevelopmentPython Tutorial5 advanced uses to improve python efficiency

5 advanced uses to improve python efficiency

Free learning recommendations: python video tutorial

5 advanced uses to improve python efficiency
Advanced features of any programming language are usually discovered through extensive experience. Let's say you're working on a complex project and looking for an answer to a question on stackoverflow. Then you suddenly discover a very elegant solution that uses Python features you never knew existed!

This way of learning is so interesting: through exploration, you discover something by accident.

Here are 5 advanced features of Python and their usage.

Lambda function

The Lambda function is a relatively small anonymous function - anonymous means that it actually has no function name.

Python functions are usually defined using the def a_function_name() style, but for the lambda function, we don’t name it at all. This is because the function of a lambda function is to perform some simple expression or operation without fully defining the function.

The lambda function can take any number of parameters, but the expression can only have one.
5 advanced uses to improve python efficiency
Look how easy it is! We performed some simple mathematical operations without defining the entire function. This is one of the many features of Python that make it a clean, simple programming language.

Map Function

Map() is a built-in Python function that can apply functions to elements in various data structures, such as lists or dictionaries. This is a very clean and readable way to perform this operation.
5 advanced uses to improve python efficiency
Filter Function

#The filter built-in function is very similar to the map function in that it also applies functions to sequence structures (lists, tuples, dictionaries). The key difference between the two is that filter() will only return elements for which the applied function returns True.

See the following example for details
5 advanced uses to improve python efficiency
Not only do we evaluate each list element for True or False, the filter() function also ensures that only elements matching True are returned. It is very convenient to handle the two steps of checking expressions and building return lists.

Itertools module

Python’s Itertools module is a collection of tools for working with iterators. Iterators are a data type that can be used in for loop statements, including lists, tuples, and dictionaries.

Using the functions in the Itertools module allows you to perform many iterator operations that often require multi-line functions and complex list comprehensions. Regarding the magic of Itertools, please see the following example:
5 advanced uses to improve python efficiency
5 advanced uses to improve python efficiency
Generator function

The Generator function is an iterator-like function , that is, it can also be used in for loop statements. This greatly simplifies your code and saves a lot of memory compared to a simple for loop.

For example, we want to add all the numbers from 1 to 1000. The first part of the following code block shows you how to use a for loop to perform this calculation.

If the list is small, say 1000 rows, the memory required for calculation is okay. But if the list is huge, such as one billion floating point numbers, this will cause problems. With this kind of for loop, you will have a huge list in memory, but not everyone has unlimited RAM to store that many things. The range() function in Python does the same thing, it builds a list in memory.

The second part of the code shows using the Python generator function to sum a list of numbers. The generator function creates elements and stores them in memory only when necessary, i.e. one at a time. This means that if you were to create a billion floating point numbers, you could only store them in memory one at a time! The xrange() function in Python 2.x uses a generator to build a list.

The above example illustrates: If you want to generate a list for a large range, then you need to use the generator function. This approach is especially important if you have limited memory, such as with mobile devices or edge computing.

That is, if you want to iterate over a list multiple times, and it's small enough to fit in memory, it's better to use a for loop or the range function in Python 2.x. Because the generator function and xrange function will generate new list values ​​every time you access them, the Python 2.x range function is a static list, and the integers are already placed in memory for quick access.
5 advanced uses to improve python efficiency
For beginners who want to learn Python development, crawler technology, Python data analysis, artificial intelligence and other technologies more easily, here is also a set of learning materials from python introduction to practice, which are available for free. .

Related free learning recommendations: python tutorial(Video)

The above is the detailed content of 5 advanced uses to improve python efficiency. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are the alternatives to concatenate two lists in Python?What are the alternatives to concatenate two lists in Python?May 09, 2025 am 12:16 AM

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

Python: Efficient Ways to Merge Two ListsPython: Efficient Ways to Merge Two ListsMay 09, 2025 am 12:15 AM

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiled vs Interpreted Languages: pros and consCompiled vs Interpreted Languages: pros and consMay 09, 2025 am 12:06 AM

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

Python: For and While Loops, the most complete guidePython: For and While Loops, the most complete guideMay 09, 2025 am 12:05 AM

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

Python concatenate lists into a stringPython concatenate lists into a stringMay 09, 2025 am 12:02 AM

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

Learn the Differences Between Python's 'for' and 'while' LoopsLearn the Differences Between Python's 'for' and 'while' LoopsMay 08, 2025 am 12:11 AM

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

Python concatenate lists with duplicatesPython concatenate lists with duplicatesMay 08, 2025 am 12:09 AM

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software