Home >Java >JavaInterview questions >Java interview question: Do you know what circular dependency is? How does Spring solve circular dependencies?
First of all, let me introduce to you what circular dependency is.
(Learning video sharing: java video tutorial)
The so-called circular dependency is that A depends on B, and B depends on A at the same time. The dependence relationship between the two is formed. A ring, usually caused by incorrect encoding. Spring can only solve the problem of circular dependency of properties, but not the problem of circular dependency of constructors, because there is no solution to this problem.
Next, we first write a Demo to demonstrate how Spring handles the problem of property circular dependencies.
Talk is cheap. Show me the code
Step one: Define a class ComponentA, which has a private property componentB.
package com.tech.ioc; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; /** * @author 君战 * **/ @Component public class ComponentA { @Autowired private ComponentB componentB; public void say(){ componentB.say(); } }
Step 2: Define a class ComponentB, which depends on ComponentA. And define a say method to facilitate printing data.
package com.tech.ioc; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; /** * @author 君战 * **/ @Component public class ComponentB { @Autowired private ComponentA componentA; public void say(){ System.out.println("componentA field " + componentA); System.out.println(this.getClass().getName() + " -----> say()"); } }
The third step: focus, write a class -SimpleContainer, imitating Spring's underlying processing of circular dependencies. If you understand this code, it will be very simple to look at Spring's logic for handling circular dependencies.
package com.tech.ioc; import java.beans.Introspector; import java.lang.reflect.Constructor; import java.lang.reflect.Field; import java.util.HashMap; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * 演示Spring中循环依赖是如何处理的,只是个简版,真实的Spring依赖处理远比这个复杂。 * 但大体思路都相同。另外这个Demo很多情况都未考虑,例如线程安全问题,仅供参考。 * @author 君战 * * **/ public class SimpleContainer { /*** * 用于存放完全初始化好的Bean,Bean处于就绪状态 * 这个Map定义和Spring中一级缓存命名一致 * */ private Map<String, Object> singletonObjects = new ConcurrentHashMap<>(); /*** * 用于存放刚创建出来的Bean,其属性还没有处理,因此存放在该缓存中的Bean还不可用。 * 这个Map定义和Spring中三级缓存命名一致 * */ private final Map<String, Object> singletonFactories = new HashMap<>(16); public static void main(String[] args) { SimpleContainer container = new SimpleContainer(); ComponentA componentA = container.getBean(ComponentA.class); componentA.say(); } public <T> T getBean(Class<T> beanClass) { String beanName = this.getBeanName(beanClass); // 首先根据beanName从缓存中获取Bean实例 Object bean = this.getSingleton(beanName); if (bean == null) { // 如果未获取到Bean实例,则创建Bean实例 return createBean(beanClass, beanName); } return (T) bean; } /*** * 从一级缓存和二级缓存中根据beanName来获取Bean实例,可能为空 * */ private Object getSingleton(String beanName) { // 首先尝试从一级缓存中获取 Object instance = singletonObjects.get(beanName); if (instance == null) { // Spring 之所以能解决循环依赖问题,也是靠着这个三级缓存--singletonFactories instance = singletonFactories.get(beanName); } return instance; } /*** * 创建指定Class的实例,返回完全状态的Bean(属性可用) * * */ private <T> T createBean(Class<T> beanClass, String beanName) { try { Constructor<T> constructor = beanClass.getDeclaredConstructor(); T instance = constructor.newInstance(); // 先将刚创建好的实例存放到三级缓存中,如果没有这一步,Spring 也无法解决三级缓存 singletonFactories.put(beanName, instance); Field[] fields = beanClass.getDeclaredFields(); for (Field field : fields) { Class<?> fieldType = field.getType(); field.setAccessible(true); // 精髓是这里又调用了getBean方法,例如正在处理ComponentA.componentB属性, // 执行到这里时就会去实例化ComponentB。因为在getBean方法首先去查缓存, // 而一级缓存和三级缓存中没有ComponentB实例数据,所以又会调用到当前方法, // 而在处理ComponentB.componentA属性时,又去调用getBean方法去缓存中查找, // 因为在前面我们将ComponentA实例放入到了三级缓存,因此可以找到。 // 所以ComponentB的实例化结束,方法出栈,返回到实例化ComponentA的方法栈中, // 这时ComponentB已经初始化完成,因此ComponentA.componentB属性赋值成功! field.set(instance, this.getBean(fieldType)); } // 最后再将初始化好的Bean设置到一级缓存中。 singletonObjects.put(beanName, instance); return instance; } catch (Exception e) { e.printStackTrace(); } throw new IllegalArgumentException(); } /** * 将类名小写作为beanName,Spring底层实现和这个差不多,也是使用javaBeans的 * {@linkplain Introspector#decapitalize(String)} **/ private String getBeanName(Class<?> clazz) { String clazzName = clazz.getName(); int index = clazzName.lastIndexOf("."); String className = clazzName.substring(index); return Introspector.decapitalize(className); } }
If all the students have read and understood the above code, then we will conduct a real source code analysis of Spring's circular dependency problem. I believe it will be easy to read it again.
Underlying source code analysis
The analysis starts with the doGetBean method of AbstractBeanFactory. You can see that transformedBeanName is first called in this method (actually to deal with the BeanName problem), which has the same effect as the getBeanName method we wrote ourselves, but Spring considers it much more complicated than this because there are FactoryBean and alias issues.
// AbstractBeanFactory#doGetBean protected <T> T doGetBean( String name, @Nullable Class<T> requiredType, @Nullable Object[] args, boolean typeCheckOnly) throws BeansException { String beanName = transformedBeanName(name); Object bean; // !!!重点是这里,首先从缓存中beanName来获取对应的Bean。 Object sharedInstance = getSingleton(beanName); if (sharedInstance != null && args == null) { // 执行到这里说明缓存中存在指定beanName的Bean实例,getObjectForBeanInstance是用来处理获取到的Bean是FactoryBean问题 bean = getObjectForBeanInstance(sharedInstance, name, beanName, null); else { try { // 删除与本次分析无关代码.... // 如果是单例Bean,则通过调用createBean方法进行创建 if (mbd.isSingleton()) { sharedInstance = getSingleton(beanName, () -> { try { return createBean(beanName, mbd, args); } catch (BeansException ex) { destroySingleton(beanName); throw ex; } }); } catch (BeansException ex) { cleanupAfterBeanCreationFailure(beanName); throw ex; } } return (T) bean; }
The getSingleton method has an overloaded method. The overloaded getSingleton method is called here. Note that the boolean parameter value passed here is true, because this value determines whether exposure of early beans is allowed.
// DefaultSingletonBeanRegistry#getSingleton public Object getSingleton(String beanName) { return getSingleton(beanName, true); }
// DefaultSingletonBeanRegistry#getSingleton protected Object getSingleton(String beanName, boolean allowEarlyReference) { // 首先从一级缓存中获取 Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { // 如果一级缓存中未获取到,再从二级缓存中获取 singletonObject = this.earlySingletonObjects.get(beanName); // 如果未从二级缓存中获取到并且allowEarlyReference值为true(前面传的为true) if (singletonObject == null && allowEarlyReference) { synchronized (this.singletonObjects) { //Double Check singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null) { singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null) { // 最后尝试去三级缓存中获取 ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { singletonObject = singletonFactory.getObject(); // 保存到二级缓存 this.earlySingletonObjects.put(beanName, singletonObject); // 从三级缓存中移除 this.singletonFactories.remove(beanName); } } } } } } return singletonObject; }
(For more interview questions, please visit: java interview questions and answers)
ok, after reading how Spring obtains Bean instances from the cache, then Take a look at how the creatBean method creates the Bean
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) throws BeanCreationException { // 删除与本次分析无关的代码... try {// createBean方法底层是通过调用doCreateBean来完成Bean创建的。 Object beanInstance = doCreateBean(beanName, mbdToUse, args); if (logger.isTraceEnabled()) { logger.trace("Finished creating instance of bean '" + beanName + "'"); } return beanInstance; } catch (BeanCreationException | ImplicitlyAppearedSingletonException ex) { throw ex; } catch (Throwable ex) { throw new BeanCreationException( mbdToUse.getResourceDescription(), beanName, "Unexpected exception during bean creation", ex); } }
// AbstractAutowireCapableBeanFactory#doCreateBean protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) throws BeanCreationException { BeanWrapper instanceWrapper = null; if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { // 创建Bean实例 instanceWrapper = createBeanInstance(beanName, mbd, args); } Object bean = instanceWrapper.getWrappedInstance(); // 如果允许当前Bean早期曝光。只要Bean是单例的并且allowCircularReferences 属性为true(默认为true) boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { // 这里调用了addSingletonFactory方法将刚创建好的Bean保存到了三级缓存中。 addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean)); } // 删除与本次分析无关的代码..... Object exposedObject = bean; try {// Bean属性填充 populateBean(beanName, mbd, instanceWrapper); // 初始化Bean,熟知的Aware接口、InitializingBean接口.....都是在这里调用 exposedObject = initializeBean(beanName, exposedObject, mbd); } catch (Throwable ex) { } // 删除与本次分析无关的代码..... return exposedObject; }
First analyze the addSingletonFactory method, because the Bean is saved to the third-level cache in this method.
protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) { Assert.notNull(singletonFactory, "Singleton factory must not be null"); synchronized (this.singletonObjects) { // 如果一级缓存中不存在指定beanName的key if (!this.singletonObjects.containsKey(beanName)) { // 将刚创建好的Bean实例保存到三级缓存中 this.singletonFactories.put(beanName, singletonFactory); // 从二级缓存中移除。 this.earlySingletonObjects.remove(beanName); this.registeredSingletons.add(beanName); } } }
The dependency injection of processing beans is completed by the populateBean method, but the entire execution link is too long, so I will not go into it here. I will only talk about how the IoC container calls it step by step when processing dependencies. getBean method, so that it matches the logic we wrote ourselves to handle field injection.
protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) { // 删除与本次分析无关代码... PropertyDescriptor[] filteredPds = null; if (hasInstAwareBpps) { if (pvs == null) { pvs = mbd.getPropertyValues(); } // 遍历所有已注册的BeanPostProcessor接口实现类,如果实现类是InstantiationAwareBeanPostProcessor接口类型的,调用其postProcessProperties方法。 for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof InstantiationAwareBeanPostProcessor) { InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp; PropertyValues pvsToUse = ibp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName); // 删除与本次分析无关代码... pvs = pvsToUse; } } // 删除与本次分析无关代码... } }
In Spring, the @Autowired annotation is processed by the AutowiredAnnotationBeanPostProcessor class, and the @Resource annotation is processed by the CommonAnnotationBeanPostProcessor class. Both classes implement the InstantiationAwareBeanPostProcessor interface and are completed in the overridden postProcessProperties method. Dependency injection. Here we analyze the processing of @Autowired annotation.
// AutowiredAnnotationBeanPostProcessor#postProcessProperties public PropertyValues postProcessProperties(PropertyValues pvs, Object bean, String beanName) { // 根据beanName以及bean的class去查找Bean的依赖元数据-InjectionMetadata InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs); try {// 调用inject方法 metadata.inject(bean, beanName, pvs); } catch (BeanCreationException ex) { throw ex; } catch (Throwable ex) { throw new BeanCreationException(beanName, "Injection of autowired dependencies failed", ex); } return pvs; }
In the inject method of InjectionMetadata, obtain all the dependent elements (InjectedElement) of the current Bean that need to be processed. This is a collection, traverse the collection, and call the inject method of each dependency injection element.
// InjectionMetadata#inject public void inject(Object target, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable { // 获取当前Bean所有的依赖注入元素(可能是方法,也可能是字段) Collection<InjectedElement> checkedElements = this.checkedElements; Collection<InjectedElement> elementsToIterate = (checkedElements != null ? checkedElements : this.injectedElements); if (!elementsToIterate.isEmpty()) { // 如果当前Bean的依赖注入项不为空,遍历该依赖注入元素 for (InjectedElement element : elementsToIterate) { // 调用每一个依赖注入元素的inject方法。 element.inject(target, beanName, pvs); } } }
Two internal classes are defined in the AutowiredAnnotationBeanPostProcessor class - AutowiredFieldElement and AutowiredMethodElement are inherited from InjectedElement, which correspond to field injection and method injection respectively.
Take the commonly used field injection as an example. In the inject method of AutowiredFieldElement, first determine whether the current field has been processed. If it has been processed, it will be cached directly. Otherwise, call the BeanFactory's resolveDependency method to handle dependencies.
// AutowiredAnnotationBeanPostProcessor.AutowiredFieldElement#inject protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable { Field field = (Field) this.member; Object value; if (this.cached) {// 如果当前字段已经被处理过,直接从缓存中获取 value = resolvedCachedArgument(beanName, this.cachedFieldValue); } else { // 构建依赖描述符 DependencyDescriptor desc = new DependencyDescriptor(field, this.required); desc.setContainingClass(bean.getClass()); Set<String> autowiredBeanNames = new LinkedHashSet<>(1); Assert.state(beanFactory != null, "No BeanFactory available"); TypeConverter typeConverter = beanFactory.getTypeConverter(); try {// 调用BeanFactory的resolveDependency来解析依赖 value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter); } catch (BeansException ex) { throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(field), ex); } // 删除与本次分析无关代码.... } if (value != null) { // 通过反射来对属性进行赋值 ReflectionUtils.makeAccessible(field); field.set(bean, value); } } }
The resolveDependency method implemented in DefaultListableBeanFactory ultimately calls the doResolveDependency method to complete the dependency resolution function. In the Spring source code, if there is a do method, then this method is the real way to do the work.
// DefaultListableBeanFactory#resolveDependency public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName, @Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException { // ..... // 如果在字段(方法)上添加了@Lazy注解,那么在这里将不会真正的去解析依赖 Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary( descriptor, requestingBeanName); if (result == null) { // 如果未添加@Lazy注解,那么则调用doResolveDependency方法来解析依赖 result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter); } return result; }
// DefaultListableBeanFactory#doResolveDependency public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName, @Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException { //..... try { // 根据名称以及类型查找合适的依赖 Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor); if (matchingBeans.isEmpty()) {// 如果未找到相关依赖 if (isRequired(descriptor)) { // 如果该依赖是必须的(例如@Autowired的required属性),直接抛出异常 raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor); } return null; } String autowiredBeanName; Object instanceCandidate; // 如果查找到的依赖多于一个,例如某个接口存在多个实现类,并且多个实现类都注册到IoC容器中。 if (matchingBeans.size() > 1) {// 决定使用哪一个实现类,@Primary等方式都是在这里完成 autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor); if (autowiredBeanName == null) { if (isRequired(descriptor) || !indicatesMultipleBeans(type)) { return descriptor.resolveNotUnique(descriptor.getResolvableType(), matchingBeans); } else { return null; } } instanceCandidate = matchingBeans.get(autowiredBeanName); } else { // We have exactly one match. Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next(); autowiredBeanName = entry.getKey(); instanceCandidate = entry.getValue(); } if (autowiredBeanNames != null) { autowiredBeanNames.add(autowiredBeanName); } // 如果查找到的依赖是某个类的Class(通常如此),而不是实例, //调用描述符的方法来根据类型resolveCandidate方法来获取该类型的实例。 if (instanceCandidate instanceof Class) { instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this); } //... }
In the resolveCandidate method of the dependency descriptor, the acquisition of the dependent Bean instance is completed by calling the getBean method of the BeanFactory.
// DependencyDescriptor#resolveCandidate public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory) throws BeansException { return beanFactory.getBean(beanName); }
In the implementation of the getBean method, it is still completed by calling the doGetBean method. This is basically the same as the dependency processing we wrote ourselves, except that what we wrote ourselves is relatively simple, and Spring has to consider and handle complex scenarios, so the code is more complicated, but the general idea is the same.
// AbstractBeanFactory#getBean public Object getBean(String name) throws BeansException { return doGetBean(name, null, null, false); }
The key point is the demo we wrote earlier to handle circular dependencies. If you understand that code and look at Spring's circular dependency processing, you will find that it is very simple.
Summarize:
Circular dependency means that there is a mutual reference relationship between two beans. For example, A depends on B, and B depends on A. However, Spring can only solve the circular dependency of properties, but not the circular dependency of constructors. This scenario cannot be solved.
The key to Spring's solution to circular dependencies is to first store the beans in the third-level cache when processing the attribute dependencies of the beans. When there are circular dependencies, obtain the relevant beans from the third-level cache, and then retrieve them from the third-level cache. Removed from the first-level cache, stored in the second-level cache, and finally stored in the first-level cache after initialization.
Related recommendations: java introductory tutorial
The above is the detailed content of Java interview question: Do you know what circular dependency is? How does Spring solve circular dependencies?. For more information, please follow other related articles on the PHP Chinese website!