search
HomeCommon ProblemWhat are the data analysis methods?

There are 4 data analysis methods, namely: 1. Trend analysis, which is generally used for long-term tracking of core indicators; 2. Quadrant analysis, which can divide each comparison subject into four groups based on different data. in each quadrant; 3. Comparative analysis, which is divided into horizontal comparison and vertical comparison; 4. Cross-sectional analysis, the main function is to subdivide the data from multiple dimensions.

What are the data analysis methods?

#The operating environment of this article: windows10 system, thinkpad t480 computer.

The update of science and technology and the rapid development of the Internet are driving the advent of the big data era. Every day, all walks of life are generating an unpredictable amount of data fragments. Only by capturing, managing, processing, and sorting out these huge databases within a reasonable period of time can companies help enterprises obtain the data they want and thus better propose business and management strategies.

Data analysis is more about interpreting data based on business background, refining and summarizing the hidden information behind the data, and discovering valuable content.

Because in this process, the data is objective and the people are in charge. The conclusions drawn by different people from the same data may be different, or even completely opposite, but the conclusion itself is not right or wrong. Therefore, some scientific analysis methods are needed to bridge the gap from objective data to subjective people. Data information is delivered better, more comprehensively and faster.

Common methods of data analysis

1. Trend analysis

When there is a lot of data, and we want to learn from the data faster and more conveniently When discovering data information, you need to use the power of graphics. The so-called power of graphics is to draw it with the help of EXCEl or other drawing tools.

Trend analysis is generally used for long-term tracking of core indicators, such as click-through rate, GMV, and number of active users. Generally, a simple data trend chart is made, but just making a data trend chart is not analysis. It must be like the above, what are the changes in the trend of the data, is there any periodicity, is there an inflection point, and analyze the reasons behind it, regardless of Is it an internal reason or an external reason. The best output from trend analysis is ratios. There are month-on-month, year-on-year, and fixed-base ratios. For example, how much GDP increased in April 2017 compared with March, this is the month-on-month ratio. The month-on-month ratio reflects the recent changing trend, but it has seasonal effects. In order to eliminate seasonal effects, a year-on-year calculation is introduced. For example, the GDP growth rate in April 2017 compared with April 2016 is the year-on-year growth rate. The fixed base ratio is easier to understand, that is, a certain base point is fixed. For example, the data in January 2017 is used as the base point, and the fixed base ratio is the comparison between the data in May 2017 and the data in January 2017.

2. Quadrant analysis

Divide each comparison subject into four quadrants based on different data. If IQ and EQ are divided, they can be divided into two dimensions and four quadrants, and each person has his or her own quadrant. Generally speaking, IQ guarantees a person's lower limit, and EQ increases a person's upper limit.

An example of the quadrant analysis method used in actual work before. Generally, registered users of p2p products are attracted by third-party channels. If the quality and quantity of traffic sources can be divided into four quadrants, then a fixed time point is selected to compare the traffic cost-effectiveness of each channel. The quality can be measured by the total amount of retention. as standard. Continue to maintain high quality and high quantity channels, expand the introduction quantity of high quality and low quantity channels, pass low quality and low quantity, and try the delivery strategies and requirements of low quality and high quantity. Such quadrant analysis allows us to conduct comparative analysis. You get a very intuitive and quick result.

3. Comparative analysis

Horizontal comparison: Horizontal comparison is to compare with yourself. The most common data indicators need to be compared with the target value to answer whether we have achieved the goal; compared with our last month, to answer how much we have grown around the north.

Vertical comparison: To put it simply, it means comparing with others. We need to compare with our competitors to answer our question about our share and position in the market.

Many people may say that comparative analysis sounds very simple. Let me give you an example. There is an e-commerce check-in page. Yesterday its pv was 5000. How do you feel when you hear such data?

You won’t feel anything. If the average PV of this check-in page is 10,000, it means there was a major problem yesterday. If the average PV of the check-in page is 2,000, it means there was a jump yesterday. The data is only for comparison. , can produce meaning.

4. Cross-analysis

Comparative analysis includes both horizontal and vertical comparisons. If you want both horizontal and vertical comparisons, there is the cross analysis method. The cross analysis method is to cross-present data from multiple dimensions and perform combined analysis from multiple angles.

When analyzing app data, it is usually divided into ios and Android.

The main function of cross analysis is to segment data from multiple dimensions and discover the most relevant dimensions to explore the reasons for data changes.

Explanation:

Trends, comparisons, quadrants, and intersections include the most basic parts of data analysis. Whether it is data verification or data analysis, finding trends, making comparisons, dividing quadrants, and making subdivisions, only data can play its due role.

Recommended: "Programming Video"

The above is the detailed content of What are the data analysis methods?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能的环境成本和承诺人工智能的环境成本和承诺Apr 08, 2023 pm 04:31 PM

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用什么呈现数据条形统计图用什么呈现数据Jan 20, 2021 pm 03:31 PM

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

自动驾驶车道线检测分类的虚拟-真实域适应方法自动驾驶车道线检测分类的虚拟-真实域适应方法Apr 08, 2023 pm 02:31 PM

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示什么数据通信中的信道传输速率单位是bps,它表示什么Jan 18, 2021 pm 02:58 PM

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有哪几种数据分析方法有哪几种Dec 15, 2020 am 09:48 AM

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

聊一聊Python 实现数据的序列化操作聊一聊Python 实现数据的序列化操作Apr 12, 2023 am 09:31 AM

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),