How to design an algorithm? Introduction to common algorithm paradigms
How to design an algorithm? The following article will analyze common algorithm paradigms for you. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to everyone.
First clarify three concepts:
Algorithm: The process of solving problems step by step.
Paradigm: A mode of thinking about a problem.
Algorithmic Paradigm: A general approach to building efficient solutions to problems.
This article discusses some commonly used algorithm paradigms, such as
- Divide and Conquer Algorithm
- Dynamic Programming
- Greedy Algorithm
- Backtracking Algorithm
Divide and Conquer
Among the sorting algorithms, the common point of the two algorithms, merge and quick sort, is the divide and conquer algorithm.
Divide and conquer is a common algorithm design. The idea is to decompose the problem into smaller sub-problems that are similar to the original problem. Subproblems are usually solved recursively and the solutions to the subproblems are combined to solve the original problem.
The logic of the divide-and-conquer method can be divided into three steps:
- Divide the original problem into smaller sub-problems.
- Solve the sub-problem recursively, and return the solution to the sub-problem after the solution is completed.
- Merge the solutions to the subproblems into the solution to the original problem.
Example of divide-and-conquer method: binary search
The following is a binary search implemented using divide-and-conquer.
function binarySearchRecursive(array, value, low, high) { if (low <= high) { const mid = Math.floor((low + high) / 2); const element = array[mid]; if (element < value) { return binarySearchRecursive(array, value, mid + 1, high); } else if (element > value) { return binarySearchRecursive(array, value, low, mid - 1); } else { return mid; } } return null; } export function binarySearch(array, value) { const sortedArray = quickSort(array); const low = 0; const high = sortedArray.length - 1; return binarySearchRecursive(array, value, low, high); }
Please note that the binarySearch
function above is for others to call, while binarySearchRecursive
is where the divide and conquer method is implemented.
Dynamic Programming
Dynamic Programming is an optimization technique used to solve complex problems by breaking them into smaller sub-problems. It looks a lot like divide and conquer, but instead of decomposing the problem into independent sub-problems and then combining them together, dynamic programming only decomposes the problem into independent sub-problems.
The algorithm logic is divided into three steps:
- Define sub-problems.
- Repeat to solve sub-problems.
- Identify and solve basic problems.
Dynamic Programming Case: Minimum Coin Change Problem
This is a common interview question called the Coin Change Problem. The coin change problem is a way of finding how many specific numbers of coins can be used to make change, given the amount of change. The minimum coin change problem is simply finding the minimum number of coins required to use a given denomination of money. For example, if you need change for 37 cents, you can use 1 2 cent, 1 5 cent, 1 1 dime, and 1 2 cent.
function minCoinChange(coins, amount) { const cache = []; const makeChange = (value) => { if (!value) { return []; } if (cache[value]) { return cache[value]; } let min = []; let newMin; let newAmount; for (let i = 0; i < coins.length; i++) { const coin = coins[i]; newAmount = value - coin; if (newAmount >= 0) { newMin = makeChange(newAmount); } if (newAmount >= 0 && (newMin.length < min.length - 1 || !min.length) && (newMin.length || !newAmount)) { min = [coin].concat(newMin); } } return (cache[value] = min); } return makeChange(amount); }
In the above code, the parameter coins
represents the denomination ([1, 2, 5, 10, 20, 50] in RMB). To prevent double counting, a cache
is used. The makeChange
function is implemented recursively and is an internal function with access to cache
.
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20] console.log(minCoinChange([1, 3, 4], 6)) // => [3, 3]
Greedy algorithm
Greedy algorithm is related to the current optimal solution and tries to find a global optimal solution. Unlike dynamic programming, it does not consider the overall situation. Greedy algorithms tend to be simple and intuitive, but may not be the overall optimal solution.
Greedy Algorithm Case: Minimum Coin Change Problem
The coin problem solved by dynamic programming above can also be solved by greedy algorithm. Whether this solution is optimal or not depends on the denomination used.
function minCoinChange(coins, amount) { const change = []; let total = 0; for (let i = coins.length; i>= 0; i--) { const coin = coins[i]; while (total + coin <= amount) { change.push(coin); total += coin; } } return change; }
As you can see, the greedy algorithm is much simpler than the dynamic programming solution. Let’s take a look at the same solution case to understand the difference between the two:
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20] console.log(minCoinChange([1, 3, 4], 6)) // => [4, 1, 1]
The greedy algorithm gives the optimal solution to the first problem, but the second one is not the optimal solution ( It should be [3,3]
).
The greedy algorithm is simpler and faster than the dynamic programming algorithm, but the solution obtained may not be the optimal solution.
Backtracking Algorithm
Backtracking Algorithm is great for finding and building solutions step by step.
- Try to solve the problem one way.
- If it doesn’t work, backtrack and repeat step 1 until you find a suitable solution.
For the backtracking algorithm, I will write another article to introduce more complex algorithms. I haven't figured out what to write yet. Maybe it's to write a program for solving Sudoku. If you are interested in this, please follow my official account!
Algorithms are never-ending. I hope this article can help you understand some common algorithm paradigms.
Related free learning recommendations: js video tutorial
The above is the detailed content of How to design an algorithm? Introduction to common algorithm paradigms. For more information, please follow other related articles on the PHP Chinese website!

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function