search
HomeDatabaseMysql TutorialWhat is generally used for mysql multi-table queries?

What is generally used for mysql multi-table queries?

Oct 20, 2020 am 10:24 AM
mysqlMulti-table query

Mysql multi-table queries generally use cross joins, inner joins and outer joins. Cross-join returns the Cartesian product of the connected tables; inner join combines records in two tables and returns records with matching associated fields, that is, returns the intersection of the two tables; outer join first divides the connected tables into base tables and Reference table, and then return records that meet and do not meet the conditions based on the base table.

What is generally used for mysql multi-table queries?

(Recommended tutorial: mysql video tutorial)

In a relational database, the relationship between tables is There is a relationship, so in practical applications, multi-table queries are often used. Multi-table query is to query two or more tables at the same time.

In MySQL, multi-table queries mainly include cross joins, inner joins and outer joins.

Cross join

Cross join (CROSS JOIN) is generally used to return the Cartesian product of the join table.

The syntax format of cross-connection is as follows:

SELECT <字段名> FROM <表1> CROSS JOIN <表2> [WHERE子句]

or

SELECT <字段名> FROM <表1>, <表2> [WHERE子句]

The syntax description is as follows:

  • Field name: The name of the field to be queried.

  • : The name of the table that requires cross-connection.
  • WHERE clause: used to set the query conditions for cross connections.

  • Note: When multiple tables are cross-connected, CROSS JOIN or , can be used continuously after FROM. The return results of the above two syntaxes are the same, but the first syntax is the officially recommended standard writing method.

    When there is no relationship between the connected tables, we will omit the WHERE clause. At this time, the returned result is the Cartesian product of the two tables, and the number of returned results is the multiplication of the data rows of the two tables. It should be noted that if each table has 1000 rows, then the number of returned results will be 1000×1000 = 1000000 rows, and the amount of data is very huge.

    Cross connection can query two or more tables. In order to give readers a better understanding, the following will first explain the cross connection query of two tables.

    Example

    Query the student information table and subject information table, and get a Cartesian product.

    In order to facilitate the observation of the running results after the cross connection between the student information table and the subject table, we first query the data of these two tables separately, and then perform the cross connection query.

    1) Query the data in the tb_students_info table. The SQL statement and running results are as follows:

    mysql> SELECT * FROM tb_students_info;
    +----+--------+------+------+--------+-----------+
    | id | name   | age  | sex  | height | course_id |
    +----+--------+------+------+--------+-----------+
    |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  2 | Green  |   23 | 男   |    158 |         2 |
    |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  6 | John   |   21 | 女   |    172 |         4 |
    |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  9 | Thomas |   22 | 女   |    178 |         5 |
    | 10 | Tom    |   23 | 女   |    165 |         5 |
    +----+--------+------+------+--------+-----------+
    10 rows in set (0.00 sec)

    2) Query the data in the tb_course table. The SQL statement and running results are as follows:

    mysql> SELECT * FROM tb_course;
    +----+-------------+
    | id | course_name |
    +----+-------------+
    |  1 | Java        |
    |  2 | MySQL       |
    |  3 | Python      |
    |  4 | Go          |
    |  5 | C++         |
    +----+-------------+
    5 rows in set (0.00 sec)

    3) Use CROSS JOIN to query the Cartesian product of the two tables. The SQL statement and running results are as follows:

    mysql> SELECT * FROM tb_course CROSS JOIN tb_students_info;
    +----+-------------+----+--------+------+------+--------+-----------+
    | id | course_name | id | name   | age  | sex  | height | course_id |
    +----+-------------+----+--------+------+------+--------+-----------+
    |  1 | Java        |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  2 | MySQL       |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  3 | Python      |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  4 | Go          |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  5 | C++         |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  1 | Java        |  2 | Green  |   23 | 男   |    158 |         2 |
    |  2 | MySQL       |  2 | Green  |   23 | 男   |    158 |         2 |
    |  3 | Python      |  2 | Green  |   23 | 男   |    158 |         2 |
    |  4 | Go          |  2 | Green  |   23 | 男   |    158 |         2 |
    |  5 | C++         |  2 | Green  |   23 | 男   |    158 |         2 |
    |  1 | Java        |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  2 | MySQL       |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  3 | Python      |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  4 | Go          |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  5 | C++         |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  1 | Java        |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  2 | MySQL       |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  3 | Python      |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  4 | Go          |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  5 | C++         |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  1 | Java        |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  2 | MySQL       |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  3 | Python      |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  4 | Go          |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  5 | C++         |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  1 | Java        |  6 | John   |   21 | 女   |    172 |         4 |
    |  2 | MySQL       |  6 | John   |   21 | 女   |    172 |         4 |
    |  3 | Python      |  6 | John   |   21 | 女   |    172 |         4 |
    |  4 | Go          |  6 | John   |   21 | 女   |    172 |         4 |
    |  5 | C++         |  6 | John   |   21 | 女   |    172 |         4 |
    |  1 | Java        |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  2 | MySQL       |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  3 | Python      |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  4 | Go          |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  5 | C++         |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  1 | Java        |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  2 | MySQL       |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  3 | Python      |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  4 | Go          |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  5 | C++         |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  1 | Java        |  9 | Thomas |   22 | 女   |    178 |         5 |
    |  2 | MySQL       |  9 | Thomas |   22 | 女   |    178 |         5 |
    |  3 | Python      |  9 | Thomas |   22 | 女   |    178 |         5 |
    |  4 | Go          |  9 | Thomas |   22 | 女   |    178 |         5 |
    |  5 | C++         |  9 | Thomas |   22 | 女   |    178 |         5 |
    |  1 | Java        | 10 | Tom    |   23 | 女   |    165 |         5 |
    |  2 | MySQL       | 10 | Tom    |   23 | 女   |    165 |         5 |
    |  3 | Python      | 10 | Tom    |   23 | 女   |    165 |         5 |
    |  4 | Go          | 10 | Tom    |   23 | 女   |    165 |         5 |
    |  5 | C++         | 10 | Tom    |   23 | 女   |    165 |         5 |
    +----+-------------+----+--------+------+------+--------+-----------+
    50 rows in set (0.00 sec)

    It can be seen from the running results that after the cross-join query of the tb_course and tb_students_info tables, 50 items were returned Record. As you can imagine, when there is a lot of data in the table, the running results obtained will be very long, and the running results obtained are not very meaningful. Therefore, this method of multi-table query through cross connection is not commonly used, and we should try to avoid this kind of query.

    Cartesian product

    The Cartesian product refers to the product of two sets X and Y.

    For example, there are two sets A and B, and their values ​​are as follows:

    A = {1,2}
    B = {3,4,5}

    The result sets of sets A×B and B×A are respectively expressed as:

    A×B={(1,3), (1,4), (1,5), (2,3), (2,4), (2,5) };
    B×A={(3,1), (3,2), (4,1), (4,2), (5,1), (5,2) };

    The above results of A×B and B×A are called the Cartesian product of the two sets.

    And, from the above results, we can see that:

    • The multiplication of two sets does not satisfy the exchange rate, that is, A×B≠B×A.

    • The Cartesian product of set A and set B is the number of elements of set A × the number of elements of set B.

    The algorithm followed by multi-table queries is the Cartesian product mentioned above. The connection between tables can be regarded as a multiplication operation. In practical applications, the use of Cartesian product should be avoided because there is a large amount of unreasonable data in the Cartesian product. Simply put, it can easily lead to duplicate and confusing query results.

    Inner JOIN

    Inner JOIN combines records in two tables and returns related fields by setting connection conditions. Matching records, that is, the intersection (shaded) part of the two tables is returned.

    What is generally used for mysql multi-table queries?

    Inner join uses the INNER JOIN keyword to connect two tables, and uses the ON clause to set the connection conditions. Without join conditions, INNER JOIN and CROSS JOIN are syntactically equivalent and interchangeable.

    The syntax format of inner connection is as follows:

    SELECT <字段名> FROM <表1> INNER JOIN <表2> [ON子句]

    The syntax description is as follows.

    • Field name: The name of the field to be queried.

    : The name of the table that requires inner join.
  • INNER JOIN: The INNER keyword can be omitted in inner joins, and only the JOIN keyword is used.

  • ON clause: used to set the connection conditions of the inner join.

  • INNER JOIN 也可以使用 WHERE 子句指定连接条件,但是 INNER JOIN ... ON 语法是官方的标准写法,而且 WHERE 子句在某些时候会影响查询的性能。

  • 多个表内连接时,在 FROM 后连续使用 INNER JOIN 或 JOIN 即可。

    示例:

    在 tb_students_info 表和 tb_course 表之间,使用内连接查询学生姓名和相对应的课程名称,SQL 语句和运行结果如下。

    mysql> SELECT s.name,c.course_name FROM tb_students_info s INNER JOIN tb_course c 
        -> ON s.course_id = c.id;
    +--------+-------------+
    | name   | course_name |
    +--------+-------------+
    | Dany   | Java        |
    | Green  | MySQL       |
    | Henry  | Java        |
    | Jane   | Python      |
    | Jim    | MySQL       |
    | John   | Go          |
    | Lily   | Go          |
    | Susan  | C++         |
    | Thomas | C++         |
    | Tom    | C++         |
    +--------+-------------+
    10 rows in set (0.00 sec)

    在这里的查询语句中,两个表之间的关系通过 INNER JOIN 指定,连接的条件使用 ON 子句给出。

    注意:当对多个表进行查询时,要在 SELECT 语句后面指定字段是来源于哪一张表。因此,在多表查询时,SELECT 语句后面的写法是表名.列名。另外,如果表名非常长的话,也可以给表设置别名,这样就可以直接在 SELECT 语句后面写上表的别名.列名

    外连接

    外连接会先将连接的表分为基表和参考表,再以基表为依据返回满足和不满足条件的记录。

    外连接可以分为左外连接和右外连接,下面根据实例分别介绍左外连接和右外连接。

    左连接

    左外连接又称为左连接,使用 LEFT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

    左连接的语法格式如下:

    SELECT <字段名> FROM <表1> LEFT OUTER JOIN <表2> <ON子句>

    语法说明如下。

    • 字段名:需要查询的字段名称。

    • :需要左连接的表名。

    • LEFT OUTER JOIN:左连接中可以省略 OUTER 关键字,只使用关键字 LEFT JOIN。

    • ON 子句:用来设置左连接的连接条件,不能省略。

    上述语法中,“表1”为基表,“表2”为参考表。左连接查询时,可以查询出“表1”中的所有记录和“表2”中匹配连接条件的记录。如果“表1”的某行在“表2”中没有匹配行,那么在返回结果中,“表2”的字段值均为空值(NULL)。

    示例1

    在进行左连接查询之前,我们先查看 tb_course 和 tb_students_info 两张表中的数据。SQL 语句和运行结果如下。

    mysql> SELECT * FROM tb_course;
    +----+-------------+
    | id | course_name |
    +----+-------------+
    |  1 | Java        |
    |  2 | MySQL       |
    |  3 | Python      |
    |  4 | Go          |
    |  5 | C++         |
    |  6 | HTML        |
    +----+-------------+
    6 rows in set (0.00 sec)
    mysql> SELECT * FROM tb_students_info;
    +----+--------+------+------+--------+-----------+
    | id | name   | age  | sex  | height | course_id |
    +----+--------+------+------+--------+-----------+
    |  1 | Dany   |   25 | 男   |    160 |         1 |
    |  2 | Green  |   23 | 男   |    158 |         2 |
    |  3 | Henry  |   23 | 女   |    185 |         1 |
    |  4 | Jane   |   22 | 男   |    162 |         3 |
    |  5 | Jim    |   24 | 女   |    175 |         2 |
    |  6 | John   |   21 | 女   |    172 |         4 |
    |  7 | Lily   |   22 | 男   |    165 |         4 |
    |  8 | Susan  |   23 | 男   |    170 |         5 |
    |  9 | Thomas |   22 | 女   |    178 |         5 |
    | 10 | Tom    |   23 | 女   |    165 |         5 |
    | 11 | LiMing |   22 | 男   |    180 |         7 |
    +----+--------+------+------+--------+-----------+
    11 rows in set (0.00 sec)

    在 tb_students_info 表和 tb_course 表中查询所有学生姓名和相对应的课程名称,包括没有课程的学生,SQL 语句和运行结果如下。

    mysql> SELECT s.name,c.course_name FROM tb_students_info s LEFT OUTER JOIN tb_course c 
        -> ON s.`course_id`=c.`id`;
    +--------+-------------+
    | name   | course_name |
    +--------+-------------+
    | Dany   | Java        |
    | Henry  | Java        |
    | NULL   | Java        |
    | Green  | MySQL       |
    | Jim    | MySQL       |
    | Jane   | Python      |
    | John   | Go          |
    | Lily   | Go          |
    | Susan  | C++         |
    | Thomas | C++         |
    | Tom    | C++         |
    | LiMing | NULL        |
    +--------+-------------+
    12 rows in set (0.00 sec)

    可以看到,运行结果显示了 12 条记录,name 为 LiMing 的学生目前没有课程,因为对应的 tb_course 表中没有该学生的课程信息,所以该条记录只取出了 tb_students_info 表中相应的值,而从 tb_course 表中取出的值为 NULL。

    右连接

    右外连接又称为右连接,右连接是左连接的反向连接。使用 RIGHT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

    右连接的语法格式如下:

    SELECT <字段名> FROM <表1> RIGHT OUTER JOIN <表2> <ON子句>

    语法说明如下。

    • 字段名:需要查询的字段名称。

    • :需要右连接的表名。

    • RIGHT OUTER JOIN:右连接中可以省略 OUTER 关键字,只使用关键字 RIGHT JOIN。

    • ON 子句:用来设置右连接的连接条件,不能省略。

    与左连接相反,右连接以“表2”为基表,“表1”为参考表。右连接查询时,可以查询出“表2”中的所有记录和“表1”中匹配连接条件的记录。如果“表2”的某行在“表1”中没有匹配行,那么在返回结果中,“表1”的字段值均为空值(NULL)。

    示例2

    在 tb_students_info 表和 tb_course 表中查询所有课程,包括没有学生的课程,SQL 语句和运行结果如下。

    mysql> SELECT s.name,c.course_name FROM tb_students_info s RIGHT OUTER JOIN tb_course c 
        -> ON s.`course_id`=c.`id`;
    +--------+-------------+
    | name   | course_name |
    +--------+-------------+
    | Dany   | Java        |
    | Green  | MySQL       |
    | Henry  | Java        |
    | Jane   | Python      |
    | Jim    | MySQL       |
    | John   | Go          |
    | Lily   | Go          |
    | Susan  | C++         |
    | Thomas | C++         |
    | Tom    | C++         |
    | NULL   | HTML        |
    +--------+-------------+
    11 rows in set (0.00 sec)

    可以看到,结果显示了 11 条记录,名称为 HTML 的课程目前没有学生,因为对应的 tb_students_info 表中并没有该学生的信息,所以该条记录只取出了 tb_course 表中相应的值,而从 tb_students_info 表中取出的值为 NULL。

    多个表左/右连接时,在 ON 子句后连续使用 LEFT/RIGHT OUTER JOIN 或 LEFT/RIGHT JOIN 即可。

    注:使用外连接查询时,一定要分清需要查询的结果,是需要显示左表的全部记录还是右表的全部记录,然后选择相应的左连接和右连接。

The above is the detailed content of What is generally used for mysql multi-table queries?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL: BLOB and other no-sql storage, what are the differences?MySQL: BLOB and other no-sql storage, what are the differences?May 13, 2025 am 12:14 AM

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

MySQL Add User: Syntax, Options, and Security Best PracticesMySQL Add User: Syntax, Options, and Security Best PracticesMay 13, 2025 am 12:12 AM

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

MySQL: How to avoid String Data Types common mistakes?MySQL: How to avoid String Data Types common mistakes?May 13, 2025 am 12:09 AM

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQL: String Data Types and ENUMs?MySQL: String Data Types and ENUMs?May 13, 2025 am 12:05 AM

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

MySQL BLOB: how to optimize BLOBs requestsMySQL BLOB: how to optimize BLOBs requestsMay 13, 2025 am 12:03 AM

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Adding Users to MySQL: The Complete TutorialAdding Users to MySQL: The Complete TutorialMay 12, 2025 am 12:14 AM

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

Mastering MySQL String Data Types: VARCHAR vs. TEXT vs. CHARMastering MySQL String Data Types: VARCHAR vs. TEXT vs. CHARMay 12, 2025 am 12:12 AM

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

MySQL: String Data Types and Indexing: Best PracticesMySQL: String Data Types and Indexing: Best PracticesMay 12, 2025 am 12:11 AM

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.