search
HomeDatabaseMysql TutorialWhat does the normalization process primarily address in the logical structure of the database?

The normalization process is mainly to overcome the defects of insertion anomalies, deletion anomalies and high redundancy in the logical structure of the database. Database normalization allows database designers to better understand the current data structure within the organization, ultimately resulting in a series of data entities. Database standardization can effectively reduce database redundancy through the design of database tables.

What does the normalization process primarily address in the logical structure of the database?

Database normalization process

The standardization of relational databases is simply to of standardization.

Necessity of standardization:

According to the needs of the project, we will create corresponding database tables to complete the data in the project of storage. This has become a fixed process for doing projects, but when you actually start to deal with business needs, you will realize that your table settings are unreasonable, leading to repeated storage of data, insertion exceptions, deletion exceptions, update exceptions and other problems. At this time, it is necessary to re-plan the table, which is a waste of time, manpower and financial resources, and is very uneconomical. Therefore, standardization is very necessary, so today I will teach you how to standardize the table.

Before teaching the standardized database method, let me introduce the knowledge to you first:

Key knowledge points function dependency

##Definition of functional dependency:

Suppose R(U) is a subset of the attribute set, X and Y are subsets of U, If for any possible relation r on R(U), if there cannot be two tuples in r whose attribute values ​​on X are equal but their attribute values ​​on Y are not equal, then it is said that the X function determines If Y or Y is functionally dependent on X, it is denoted as X->Y.

The definition may be a little difficult to understand. Let me explain it briefly here: Functional dependency describes a mapping relationship between two collections. This mapping relationship is the same as a function. For example, y = x^2, here for x, one x corresponds to one y value, but there is no situation where one x corresponds to multiple y values, so it can be said that the y function depends on x. However, for For y, there is a situation where one y value corresponds to multiple x values, so x is not functionally dependent on y. This is functional dependency.

Next we introduce several special functional dependencies:

Complete functional dependency

Definition:

If X-> ;Y, and for any proper subset X' of X does not exist, X'->Y, then we say that the functional dependence of X->Y belongs to complete functional dependence.

A brief explanation: Function z = x y, for z: z function depends on x and y, but z does not depend solely on x or solely on y, which means that z function depends on This dependence between x and y is a complete functional dependence.

Partial functional dependency:

Definition:

If X->Y, but Y does not completely depend on X, then this dependence is called For partial complete dependence. That is to say: the function z = x 0y can be regarded as , that is to say, the z function depends on x and y, but z depends solely on x, then this is partial functional dependence.

Transitive functional dependency:

Definition:

If X->Y, Y -> Z, and not true, Y-> X is not true either. Then the Z transfer function is said to depend on X.

This is relatively simple. The function group z = x^2, x = 2y can be simplified to z = 4y ^2. It is easy to see: z is a function that depends on x, x depends on y, and z ->x does not hold, this is a transfer function dependency.

Key knowledge point two-----Key

Candidate key: an attribute (field) or An attribute group (multiple fields) can be completely determined by other attributes (fields) in the relational schema (table). That is to say, other attributes (fields) are completely dependent on this attribute (field) or attribute group (multiple fields).

Primary key: If there is more than one candidate key, select one of them as the primary key. The value of the attribute or attribute group selected as the primary key in each tuple (row) in the relationship schema (table) is not allowed to be repeated and the value is null.

Main attributes: The attributes in any candidate key are called primary attributes. If the candidate key is composed of multiple attributes, then each attribute in these attribute groups is a primary attribute.

Non-primary attributes: Attributes that are not included in any key are called non-primary attributes.

Foreign key: An attribute or attribute group is not a primary key in the current relational schema (table), but serves as the primary key in another relational schema (table). This attribute or attribute group is called Property groups are foreign keys.

After introducing the above basic knowledge points, let's start learning the standardization process of database tables:

If you want to standardize a table, you first need a standard to measure whether the table has been standardized. This standard is----

paradigm.

There are six paradigms: first normal form (1NF), second normal form (2NF), third normal form (3NF), BC normal form (BCNF), fourth normal form (4NF), and fifth normal form (5NF).

In the above six paradigms, under normal circumstances we need to standardize the table to BCNF, which is perfect. In real projects, it only needs to reach 3NF.

Next, we will focus on the first four paradigms:

First paradigm: All attributes in the relational model R are inseparable data items.

To put it simply, as long as you can create a table, the table already satisfies the first normal form. For example, the student table (student_id, course_id, student_name, age, sex, grade, sdept, sdept_director). In this table, it is obvious that the grade item is jointly determined by student_id, course_id, so these two items should be combined as Primary key.

Second normal form: On the basis of satisfying the first normal form, satisfying non-primary attributes completely depends on the primary key of R.

This requires the use of the previous content to determine whether the non-primary attributes are completely dependent on the primary key. If you are not satisfied, it will be heavy Change the structure of the table. For example, the student table (student_id, course_id, student_name, age, sex, grade, sdept_id, sdept_director) uses the combination of student_id and course_id as the primary key, but for other attributes such as name, age, and sex, they are completely dependent. Rely on the attribute student_id, so they are partially dependent on student_id and course_id as the primary key. This does not meet the definition of the second normal form, so we should take out the grade and split this large table into two small tables: student(student_id, name, age, sex, sdept_id, sdept_director), student_score(student_id, course_id , grade);

Third normal form: Remove transitive dependencies when the second normal form is satisfied.

For example: student table (student_id, student_name, age, sex, sdept, sdept_director), obviously each major determines a professional director, so the sdept_director transfer depends on the student_id, so it should be split into one The tables student (student_id, student_name, age, sex) and sdept (sdept_id, sdept_name, sdept_director) satisfy the third normal form.

BC paradigm: When satisfying the third paradigm, three more points must be met:

1. All main attributes are completely dependent on other Contains its own candidate key;
2. All non-primary attributes are completely dependent on each candidate key;
3. No attribute is completely functionally dependent on any one Group non-primary attribute.

The previous three paradigms all impose various constraints on non-primary attributes. The BC paradigm is based on them and then constrains the primary attributes to solve the partial dependence between the primary attributes. problem, and there is no problem that the main attribute completely depends on the non-primary attribute. Our student table student (student_id, student_name, age, sex), the primary key is student_id, so the main attribute is student_id. Obviously the first two are satisfied, because the student's name may be repeated, so there is no functional dependency between student_id and student_name relationship, so the student table satisfies BC normal form.

The above is the normalization process of the database

Related recommendations: "mysql tutorial"

The above is the detailed content of What does the normalization process primarily address in the logical structure of the database?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
深入理解MySQL索引优化器工作原理深入理解MySQL索引优化器工作原理Nov 09, 2022 pm 02:05 PM

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于索引优化器工作原理的相关内容,其中包括了MySQL Server的组成,MySQL优化器选择索引额原理以及SQL成本分析,最后通过 select 查询总结整个查询过程,下面一起来看一下,希望对大家有帮助。

sybase是什么数据库sybase是什么数据库Sep 22, 2021 am 11:39 AM

sybase是基于客户/服务器体系结构的数据库,是一个开放的、高性能的、可编程的数据库,可使用事件驱动的触发器、多线索化等来提高性能。

visual foxpro数据库文件是什么visual foxpro数据库文件是什么Jul 23, 2021 pm 04:53 PM

visual foxpro数据库文件是管理数据库对象的系统文件。在VFP中,用户数据是存放在“.DBF”表文件中;VFP的数据库文件(“.DBC”)中不存放用户数据,它只起将属于某一数据库的 数据库表与视图、连接、存储过程等关联起来的作用。

数据库系统的构成包括哪些数据库系统的构成包括哪些Jul 15, 2022 am 11:58 AM

数据库系统由4个部分构成:1、数据库,是指长期存储在计算机内的,有组织,可共享的数据的集合;2、硬件,是指构成计算机系统的各种物理设备,包括存储所需的外部设备;3、软件,包括操作系统、数据库管理系统及应用程序;4、人员,包括系统分析员和数据库设计人员、应用程序员(负责编写使用数据库的应用程序)、最终用户(利用接口或查询语言访问数据库)、数据库管理员(负责数据库的总体信息控制)。

microsoft sql server是什么软件microsoft sql server是什么软件Feb 28, 2023 pm 03:00 PM

microsoft sql server是Microsoft公司推出的关系型数据库管理系统,是一个全面的数据库平台,使用集成的商业智能(BI)工具提供了企业级的数据管理,具有使用方便可伸缩性好与相关软件集成程度高等优点。SQL Server数据库引擎为关系型数据和结构化数据提供了更安全可靠的存储功能,使用户可以构建和管理用于业务的高可用和高性能的数据应用程序。

数据库的什么是指数据的正确性和相容性数据库的什么是指数据的正确性和相容性Jul 04, 2022 pm 04:59 PM

数据库的“完整性”是指数据的正确性和相容性。完整性是指数据库中数据在逻辑上的一致性、正确性、有效性和相容性。完整性对于数据库系统的重要性:1、数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据;2、合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能;3、完善的数据库完整性有助于尽早发现应用软件的错误。

go语言可以写数据库么go语言可以写数据库么Jan 06, 2023 am 10:35 AM

go语言可以写数据库。Go语言和其他语言不同的地方是,Go官方没有提供数据库驱动,而是编写了开发数据库驱动的标准接口,开发者可以根据定义的接口来开发相应的数据库驱动;这样做的好处在于,只要是按照标准接口开发的代码,以后迁移数据库时,不需要做任何修改,极大方便了后期的架构调整。

mysql查询慢的因素除了索引,还有什么?mysql查询慢的因素除了索引,还有什么?Jul 19, 2022 pm 08:22 PM

mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。遇到这种问题,我们一般也会想到是因为索引。那除开索引之外,还有哪些因素会导致数据库查询变慢呢?

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools