There are three ways to implement redis current limiting, which are: 1. Based on the setnx operation of Redis, the expiration practice is set for the specified key; 2. Based on the Redis data structure zset, the request is made into A zset array; 3. Token bucket algorithm based on Redis, if the output rate is greater than the input rate, the current must be limited.
There are three ways to implement redis current limiting, namely:
The first one: Setnx operation based on Redis
When we use Redis's distributed lock, everyone knows that we rely on the setnx instruction. During the CAS (Compare and swap) operation, we also give The specified key is set to expire. Our main purpose of current limiting is to allow only N number of requests to access my code program within a unit time. So relying on setnx can easily achieve this function.
For example, if we need to limit 20 requests within 10 seconds, then we can set the expiration time to 10 during setnx. When the number of requested setnx reaches 20, the current limiting effect will be achieved. The code is relatively simple and will not be shown.
Of course, there are many disadvantages to this approach. For example, when counting 1-10 seconds, it is impossible to count 2-11 seconds. If you need to count M requests within N seconds, then our Redis Need to keep N keys and other issues
Related learning recommendations:redis video tutorial
The second type: based on Redis Data structure zset
In fact, the most important thing involved in current limiting is the sliding window. It is also mentioned above how 1-10 becomes 2-11. In fact, the starting value and the end value are both 1.
And if we use the list data structure of Redis, we can easily implement this function
We can make the request into a zset array. When each request comes in, the value remains unique. Generated with UUID, and score can be represented by the current timestamp, because score can be used to calculate the number of requests within the current timestamp. The zset data structure also provides the range method so that we can easily get the number of requests within 2 timestamps
The code is as follows
public Response limitFlow(){ Long currentTime = new Date().getTime(); System.out.println(currentTime); if(redisTemplate.hasKey("limit")) { Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime - intervalTime, currentTime).size(); // intervalTime是限流的时间 System.out.println(count); if (count != null && count > 5) { return Response.ok("每分钟最多只能访问5次"); } } redisTemplate.opsForZSet().add("limit",UUID.randomUUID().toString(),currentTime); return Response.ok("访问成功"); }
The above code can achieve the effect of sliding windows , and can guarantee at most M requests every N seconds. The disadvantage is that the data structure of zset will become larger and larger. The implementation method is relatively simple.
The third type: Redis-based token bucket algorithm
When it comes to current limiting, we have to mention the token bucket algorithm. The token bucket algorithm is also called the bucket algorithm. For details, please refer to Du Niang’s explanation Token Bucket Algorithm
The token bucket algorithm mentions input rate and output rate. When the output rate is greater than the input rate, then it is Traffic limit exceeded.
That is to say, every time we access a request, we can get a token from Redis. If we get the token, it means that the limit has not been exceeded. If we cannot get it, the result will be the opposite.
Relying on the above ideas, we can combine the List data structure of Redis to easily achieve such code
Rely on the leftPop of List to obtain the token
// 输出令牌 public Response limitFlow2(Long id){ Object result = redisTemplate.opsForList().leftPop("limit_list"); if(result == null){ return Response.ok("当前令牌桶中无令牌"); } return Response.ok(articleDescription2); }
Then rely on Java's scheduled task is to rightPush the token into the List regularly. Of course, the token also needs to be unique, so I still use UUID to generate it.
// 10S的速率往令牌桶中添加UUID,只为保证唯一性 @Scheduled(fixedDelay = 10_000,initialDelay = 0) public void setIntervalTimeTask(){ redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString()); }
In summary, the code implementation is not difficult to start with. For these current limiting methods, we can add the above code to AOP or filter to limit the current flow of the interface and ultimately protect your website.
Redis actually has many other uses. Its role is not only caching and distributed locking. Its data structures are not just String, Hash, List, Set, and Zset. Those who are interested can follow up on his GeoHash algorithm; BitMap, HLL and Bloom filter data (added after Redis 4.0, you can use Docker to install redislabs/rebloom directly) structure.
If you have any questions, please leave a message to discuss
The above is the detailed content of How many ways are there to implement redis current limiting?. For more information, please follow other related articles on the PHP Chinese website!

Redis是现在最热门的key-value数据库,Redis的最大特点是key-value存储所带来的简单和高性能;相较于MongoDB和Redis,晚一年发布的ES可能知名度要低一些,ES的特点是搜索,ES是围绕搜索设计的。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于redis的一些优势和特点,Redis 是一个开源的使用ANSI C语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式存储数据库,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis Cluster集群收缩主从节点的相关问题,包括了Cluster集群收缩概念、将6390主节点从集群中收缩、验证数据迁移过程是否导致数据异常等,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于原子操作中命令原子性的相关问题,包括了处理并发的方案、编程模型、多IO线程以及单命令的相关内容,下面一起看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了bitmap问题,Redis 为我们提供了位图这一数据结构,位图数据结构其实并不是一个全新的玩意,我们可以简单的认为就是个数组,只是里面的内容只能为0或1而已,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于实现秒杀的相关内容,包括了秒杀逻辑、存在的链接超时、超卖和库存遗留的问题,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
