search
HomeDatabaseRedisMonitoring and optimization of Redis persistence process

Redis persistence process has always been a common factor affecting redis performance. How to monitor persistence and how to optimize the persistence process? Here we take a look.

Monitoring and optimization of fork

No matter which persistence is used, RDB persistence or AOF rewriting, the main process will fork out. A child process, in which the generation of RDB files or the rewriting of AOF are completed. The fork operation is a relatively heavy operation for the operating system. During the fork phase, redis will block for a period of time. The blocking time is directly proportional to the memory size occupied by redis data. Each 1G memory fork takes 20 milliseconds.

If you want to know the blocking time of the fork stage, you can use the info stats command to view the value of the latest_fork_usec option, the unit is microseconds. Remember it's microseconds, not milliseconds.

# redis-cli info stats | grep latest
latest_fork_usec:323

Methods to optimize fork:

  • Control the memory size occupied by redis. If the memory usage is too large, the application can be split and deployed on multiple servers to share the memory usage of redis.

  • Appropriately reduce the frequency of fork operations.

Memory monitoring

RDB persistence log is as follows:

……
21692:C 15 May 2020 14:17:06.935 * DB saved on disk
21692:C 15 May 2020 14:17:06.936 * RDB: 2 MB of memory used by copy-on-write
……

You can see The RDB persistence process consumes 2M memory.

The AOF persistence log is as follows:

……
15786:C 23 May 2020 07:39:59.145 * AOF rewrite: 2MB of memory used by copy-on-write
10679:M 23 May 2020 07:39:59.201 * Background AOF rewrite terminated with success
10679:M 23 May 2020 07:39:59.201 * Residual parent diff successfully flushed to the rewritten AOF (0.02 MB)
10679:M 23 May 2020 07:39:59.201 * Background AOF rewrite finished successfully

You can see that the memory occupied by aof rewriting is 2MB 0.02MB=2.02MB

If you want to monitor the memory during the persistence process For the occupancy status, you can write a shell script to count the relevant information in the redis log.

Hard disk monitoring

The Redis persistence process will put pressure on the hard disk, because after persistence, the memory data will be saved to the hard disk. .

The Linux system has sar, iostat, etc. commands for monitoring the hard disk. If it is found that the hard disk IO pressure exceeds the threshold, then compare the persistence time according to the redis log to see if it is caused by the pressure of redis persistence. .

Optimization method Here are two points:

  • Use a disk with good performance. Mechanical hard drives are definitely not as good as solid-state drives.

  • If several redis instances are configured on a single machine, they can be written to different disks to reduce the writing pressure on the disk.

Single-machine multi-instance deployment

Because redis is a single-threaded architecture, if only one redis instance is deployed on a server , then it is a waste for multi-core CPUs. Therefore, multiple redis applications are usually deployed on one server. For example, three redis services are opened, and the port numbers are 6379, 6380, and 6381. 6379 is used for caching services, 6380 is used for message queues, and 6381 is used for tags. and recommendation systems.

This can indeed make full use of the CPU, but it can easily cause problems. If multiple instances are persisting at the same time, the pressure on the CPU, memory and video will be very large. A good practice is to isolate them so that only one instance is persisting at a time.

The pseudo code to achieve this effect is as follows:

while (true)
{
     $redisObj = [6379,6380,……];
     
     foreach ($redisObj as $obj) {
          // 该实例是否构成重写的要求
          if (rewriteConf($ojb)) {
           // 该实例进行持久化
          }
     }
}

foreach is used to traverse each redis instance, and then determine whether the instance meets the conditions for rewriting. If it is met, rewriting will begin. In this way, multiple redis instances can be persisted and isolated.

The above is the detailed content of Monitoring and optimization of Redis persistence process. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Redis's Role: Exploring the Data Storage and Management CapabilitiesRedis's Role: Exploring the Data Storage and Management CapabilitiesApr 22, 2025 am 12:10 AM

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis: Understanding NoSQL ConceptsRedis: Understanding NoSQL ConceptsApr 21, 2025 am 12:04 AM

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

Redis: Real-World Use Cases and ExamplesRedis: Real-World Use Cases and ExamplesApr 20, 2025 am 12:06 AM

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis: Exploring Its Features and FunctionalityRedis: Exploring Its Features and FunctionalityApr 19, 2025 am 12:04 AM

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

Is Redis a SQL or NoSQL Database? The Answer ExplainedIs Redis a SQL or NoSQL Database? The Answer ExplainedApr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis: Improving Application Performance and ScalabilityRedis: Improving Application Performance and ScalabilityApr 17, 2025 am 12:16 AM

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis: Exploring Its Data Model and StructureRedis: Exploring Its Data Model and StructureApr 16, 2025 am 12:09 AM

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis: Classifying Its Database ApproachRedis: Classifying Its Database ApproachApr 15, 2025 am 12:06 AM

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor