MySQL can be divided into two parts: Server layer and storage engine layer
The Server layer includes connectors and query cache , analyzers, optimizers, executors, etc., covering most of MySQL's core service functions and all built-in functions. All cross-storage engine functions are implemented in this layer, such as stored procedures, triggers, views, etc.
The storage engine layer is responsible for data storage and retrieval. Its architectural model is plug-in and supports multiple storage engines such as InnoDB, MyISAM, and Memory. The most commonly used storage engine now is InnoDB
(free learning video tutorial recommendation: mysql video tutorial)
Let’s take a look at the sql execution process
Connector
In the first step, you will connect to the database first, and the connector will receive you at this time. The connector is responsible for establishing a connection with the client, obtaining permissions, maintaining and managing the connection
After the connection is completed, if you have no subsequent actions, the connection will be in an idle state. You can see it in the show processlist command.
If the client is inactive for too long, the connector will automatically disconnect it. This time is controlled by the parameter wait_timeout. The default value is 8 hours.
The process of establishing a connection is usually complicated, so the actions of establishing a connection should be minimized during use, that is, try to use long connections
But after all long connections are used, you may find that sometimes the memory occupied by MySQL increases very quickly. This is because the memory temporarily used by MySQL during execution is managed in the connection object. These resources will be released only when the connection is disconnected
How to solve this problem? You can consider the following two options.
1. Disconnect long connections regularly. After using it for a period of time, or after the program determines that a large query that takes up memory has been executed, the connection is disconnected, and then the query is required and then reconnected.
2. If you are using MySQL 5.7 or newer, you can reinitialize the connection resource by executing mysql_reset_connection each time after performing a relatively large operation. This process does not require reconnection and permission verification, but the connection will be restored to the state when it was just created
Query cache
After the connection is established, you You can execute the select statement. The execution logic will come to the second step: query cache. After MySQL gets a query request, it will first go to the query cache to see if this statement has been executed before. Previously executed statements and their results may be cached directly in memory in the form of key-value pairs. The key is the query statement, and the value is the result of the query. If your query can find the key directly in this cache, then the value will be returned directly to the client
If the statement is not in the query cache, it will continue with the subsequent execution stages. After execution is completed, the execution results will be stored in the query cache. You can see that if the query hits the cache, MySQL can directly return the result without performing subsequent complex operations. This efficiency will be very high
But in most cases do not use the query cache. Why? Because? Query caching often does more harm than good.
The query cache fails very frequently. As long as there is an update to a table, all query caches on this table will be cleared. So it's possible that you took the trouble to save the results, and before you even used them, they were wiped out by an update. For databases with heavy update pressure, the hit rate of the query cache will be very low. Unless your business has a static table that will only be updated for a long time
You can set the parameter query_cache_type to DEMAND, so that the query cache is not used for the default SQL statements
MySQL version 8.0 directly deletes the entire query cache function, which means that this function is completely gone from 8.0
Analyzer
If the query cache is not hit, the actual execution of the statement begins. First of all, MySQL needs to know what you want to do, so it needs to parse the SQL statement
The analyzer will first do "lexical analysis". What you input is an SQL statement composed of multiple strings and spaces. MySQL needs to identify what the strings in it are and what they represent.
After completing these identifications, it needs to do "syntactic analysis" . According to the results of lexical analysis, the syntax analyzer will determine whether the SQL statement you entered satisfies the MySQL syntax
Optimizer
After passing the analyzer, MySQL knows what you want to do. Before execution begins, it must be processed by the optimizer.
The optimizer determines which index to use when there are multiple indexes in the table; or when a statement has multiple table associations (joins), it determines the connection order of each table
After the optimizer phase is completed, the execution plan of this statement is determined, and then enters the executor phase
executor
When starting execution, you must first determine whether you have permission to execute queries on this table T. If not, an error of no permission will be returned.
If you have permission, open the table and continue execution. When the table is opened, the executor will use the interface provided by the engine to execute according to the engine definition of the table.
At this point, the server layer has completed executing the specific engine layer logic. We will analyze it in the next article
The above is the detailed content of Analysis of mysql execution process. For more information, please follow other related articles on the PHP Chinese website!

MySQL uses a GPL license. 1) The GPL license allows the free use, modification and distribution of MySQL, but the modified distribution must comply with GPL. 2) Commercial licenses can avoid public modifications and are suitable for commercial applications that require confidentiality.

The situations when choosing InnoDB instead of MyISAM include: 1) transaction support, 2) high concurrency environment, 3) high data consistency; conversely, the situation when choosing MyISAM includes: 1) mainly read operations, 2) no transaction support is required. InnoDB is suitable for applications that require high data consistency and transaction processing, such as e-commerce platforms, while MyISAM is suitable for read-intensive and transaction-free applications such as blog systems.

In MySQL, the function of foreign keys is to establish the relationship between tables and ensure the consistency and integrity of the data. Foreign keys maintain the effectiveness of data through reference integrity checks and cascading operations. Pay attention to performance optimization and avoid common errors when using them.

There are four main index types in MySQL: B-Tree index, hash index, full-text index and spatial index. 1.B-Tree index is suitable for range query, sorting and grouping, and is suitable for creation on the name column of the employees table. 2. Hash index is suitable for equivalent queries and is suitable for creation on the id column of the hash_table table of the MEMORY storage engine. 3. Full text index is used for text search, suitable for creation on the content column of the articles table. 4. Spatial index is used for geospatial query, suitable for creation on geom columns of locations table.

TocreateanindexinMySQL,usetheCREATEINDEXstatement.1)Forasinglecolumn,use"CREATEINDEXidx_lastnameONemployees(lastname);"2)Foracompositeindex,use"CREATEINDEXidx_nameONemployees(lastname,firstname);"3)Forauniqueindex,use"CREATEU

The main difference between MySQL and SQLite is the design concept and usage scenarios: 1. MySQL is suitable for large applications and enterprise-level solutions, supporting high performance and high concurrency; 2. SQLite is suitable for mobile applications and desktop software, lightweight and easy to embed.

Indexes in MySQL are an ordered structure of one or more columns in a database table, used to speed up data retrieval. 1) Indexes improve query speed by reducing the amount of scanned data. 2) B-Tree index uses a balanced tree structure, which is suitable for range query and sorting. 3) Use CREATEINDEX statements to create indexes, such as CREATEINDEXidx_customer_idONorders(customer_id). 4) Composite indexes can optimize multi-column queries, such as CREATEINDEXidx_customer_orderONorders(customer_id,order_date). 5) Use EXPLAIN to analyze query plans and avoid

Using transactions in MySQL ensures data consistency. 1) Start the transaction through STARTTRANSACTION, and then execute SQL operations and submit it with COMMIT or ROLLBACK. 2) Use SAVEPOINT to set a save point to allow partial rollback. 3) Performance optimization suggestions include shortening transaction time, avoiding large-scale queries and using isolation levels reasonably.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
