Home >Common Problem >Is a binary linked list the storage structure of a binary tree?
Binary linked list is the storage structure of binary tree. Binary linked list is a binary linked list implementation of a tree (child sibling representation), using a binary linked list as the storage structure of the tree. The two link fields of a node in the linked list point to the first child node and the second child node of the node respectively.
Structural description (Recommended learning: web front-end video tutorial)
typedef struct CSNode{ ElemType data; struct CSNode *firstchild , *netsibling; } CSNode,* CSTree;
Because of the binary tree The storage structure is relatively simple and easy to process, so sometimes it is necessary to convert a complex tree into a simple binary tree before processing.
Function definition of binary linked list
bitree.h
//二叉链表定义 #include <iostream> using namespace std; typedef char TElemType; struct BiTNode{ TElemType data; BiTNode *lchild,*rchild; }; typedef BiTNode *BiTree; void initBiTree(BiTree &T); void createBiTree(BiTree &T); void preOrderTraverse(BiTree T,void (*visit)(TElemType)); //递归前序遍历 void preOrderTraverse1(BiTree T,void (*visit)(TElemType)); //非递归前序遍历 void inOrderTraverse(BiTree T,void (*visit)(TElemType)); //递归中序遍历 void postOrderTraverse(BiTree T,void (*visit)(TElemType)); //递归后序遍历 void levelOrderTraverse(BiTree T,void (*visit)(TElemType)); //层序遍历 bitree.cpp #include "bitree.h" void initBiTree(BiTree &T){ //构造空二叉树T T=NULL; } void createBiTree(BiTree &T){ //按先序次序输入二叉树中结点的值('#'表示空格),构造二叉链表表示的二叉树T。 TElemType ch; cin>>ch; if(ch=='#') // 空 T=NULL; else{ T=new BiTNode; if(!T) exit(1); T->data=ch; // 生成根结点 createBiTree(T->lchild); // 构造左子树 createBiTree(T->rchild); // 构造右子树 } } void preOrderTraverse(BiTree T,void (*visit)(TElemType)){ // 先序递归遍历T,对每个结点调用函数Visit一次且仅一次 if(T){ // T不空 visit(T->data); // 先访问根结点 preOrderTraverse(T->lchild,visit); // 再先序遍历左子树 preOrderTraverse(T->rchild,visit); // 最后先序遍历右子树 } } void preOrderTraverse1(BiTree T,void (*visit)(TElemType)){ //前序遍历二叉树T的非递归算法(利用栈),对每个数据元素调用函数Visit BiTree s[100]; int top=0; //top为栈顶指针 while((T!=NULL)||(top>0)){ while(T!=NULL){ visit(T->data); s[top++]=T; T=T->lchild; } T=s[--top]; T=T->rchild; } } void inOrderTraverse(BiTree T,void (*visit)(TElemType)){ //中序递归遍历T,对每个结点调用函数Visit一次且仅一次 if(T){ inOrderTraverse(T->lchild,visit); // 先中序遍历左子树 visit(T->data); // 再访问根结点 inOrderTraverse(T->rchild,visit); // 最后中序遍历右子树 } } void postOrderTraverse(BiTree T,void (*visit)(TElemType)){ //后序递归遍历T,对每个结点调用函数Visit一次且仅一次 if(T){ inOrderTraverse(T->lchild,visit); // 后序遍历左子树 inOrderTraverse(T->rchild,visit); // 再后序遍历右子树 visit(T->data); // 最后访问根结点 } } void levelOrderTraverse(BiTree T,void (*visit)(TElemType)){ //层序遍历T(利用队列),对每个结点调用函数Visit一次且仅一次 BiTree q[100],p; int f,r; // f,r类似于头尾指针 q[0]=T; f=0; r=1; while(f<r){ p=q[f++]; //出队 visit(p->data); if(p->lchild!=NULL) q[r++]=p->lchild; //入队 if(p->rchild!=NULL) q[r++]=p->rchild; //入队 } }
The above is the detailed content of Is a binary linked list the storage structure of a binary tree?. For more information, please follow other related articles on the PHP Chinese website!