The reason for the incident
Because our company held an algorithm programming competition, the algorithm questions in the picture below were randomly drawn. After thinking about it for a while, I remembered that there was one in the book (Algorithm Illustration). The algorithm is more consistent with the "knapsack problem" in dynamic programming.
The knapsack problem is an NP-complete problem of combinatorial optimization. The problem can be described as: given a set of items, each item has its own weight and price, within the limited total weight, how do we choose so that the total price of the items is the highest.
How to choose the most appropriate items to place in a given backpack is consistent with our question, so this time we use the "0-1 backpack problem" and use our question this time to substitute it. "Total number of people" is equivalent to "backpack", "item" is equivalent to "work order type", and the weight of the item is the number of people required.
Supplement:
There are three extension problems of the solution to the knapsack problem: unbounded knapsack problem, 0-1 knapsack problem, and quadratic knapsack problem (without detailed extension, just We use)
The algorithm topic is as follows
The problem dealt with by dynamic programming is a multi-stage decision-making problem, generally starting from the initial The state starts and reaches the end state through the selection of decisions in the intermediate stages. These decisions form a decision sequence and determine an activity route to complete the entire process (usually the optimal activity route). The design of dynamic programming has a certain pattern, which generally involves the following steps.
Initial state→│Decision 1│→│Decision 2│→...→│Decisionn│→End state
Dynamic programming problem-solving formula:
f(n,m)=max{f(n-1,m),f(n-1,m-w[n])+P(n,m)}
● Horizontal m (total number of people), vertical n (type of work order made by 4 vehicles)
● f(n-1,m) ==> (Decision 1) The number of technicians corresponding to the previous work order type, and the profit of the work order
● P(n,m) ==> (Decision 2) The number of technicians corresponding to the current work order type, and the work done Single profit
● f(n-1,m-w[n]) ==> By subtracting the number of people required for the current work order, the profit for the corresponding number of people in the previous decision
So the answer to the optimal solution is: the corresponding value among the five technicians in decision n, 1799 yuan
PostMan submitted parameters:
people:5 carDetail[0][technician]:2 carDetail[0][amount]:49 carDetail[0][type]:全车安检 carDetail[1][technician]:2 carDetail[1][amount]:499 carDetail[1][type]:深度诊断 carDetail[2][technician]:3 carDetail[2][amount]:1300 carDetail[2][type]:二手车检测 carDetail[3][technician]:1 carDetail[3][amount]:10 carDetail[3][type]:空调专项检测
Solution one: dynamic programming
<?php // 动态规划 error_reporting(E_ALL ^ E_NOTICE); $t1 = microtime(true); class bestMatch { public function getMethod($postData) { $peopleArr = $gainArr = $nameArr = [0]; foreach ($postData['carDetail'] as $val) { // 初始化各个套餐:所需人数、利润和套餐名称数组 $peopleArr[] = $val['technician']; $gainArr[] = $val['amount']; $nameArr[] = $val['type']; } // 获取人数总数(背包) $totalPeople = $postData['people']; // 做检测单数 $items = count($peopleArr); // 利润列表 - 初始状态 $cacheMap[] = array_fill(1, $items, 0); // 套餐列表 - 初始状态 $cacheMapName[] = array_fill(1, $items, ''); //中间的各种决策(依次放入物品a,b,c,d,e) // 第一个循环是总人数 for($i = 1; $i <= $totalPeople; $i++) { // 第二个循环是套餐 for($j = 1; $j < $items; $j++) { $requiredPeople = $peopleArr[$j]; $gain = $gainArr[$j]; $name = $nameArr[$j]; // 上一行坐标数 $preLine = $j-1; $prevGain = $cacheMap[$preLine][$i]; $prevName = $cacheMapName[$preLine][$i]; if($requiredPeople > $i) { $cacheMap[$j][$i] = $prevGain; $cacheMapName[$j][$i] = $prevName; } else { // 剩余价值 if ($i-$requiredPeople >= 0) { $surplusPeople = $i-$requiredPeople; $surplusGain = $cacheMap[$preLine][$surplusPeople]; $surplusName = $cacheMapName[$preLine][$surplusPeople]; }else { $surplusGain = 0; $surplusName = ''; } $nowTotalGain = $gain + $surplusGain; $cacheMap[$j][$i] = max($prevGain, $nowTotalGain); if ($prevGain > $nowTotalGain) { $cacheMapName[$j][$i] = $prevName; }else{ $cacheMapName[$j][$i] = $name.'+'.$surplusName; } } } } $actual = count($postData['carDetail']); return [ 'maxMatch' => $cacheMap[$actual][$totalPeople], 'maxMatchName' => trim($cacheMapName[$actual][$totalPeople],'+') ]; } } $bestMatch = new bestMatch; if (empty($_POST) || isset($_POST['people']) && $_POST['people'] > 0) { die('提交参数有误'); } $res = $bestMatch->getMethod($_POST); $t2 = microtime(true); echo '动态规划: '.'<br/>'; echo '最佳金额: '.$res['maxMatch'].'<br/>'; echo '最佳套餐搭配: '.$res['maxMatchName'].'<br/>'; echo '耗时'.round($t2-$t1,7).'秒'.'<br/>' ; echo '消耗内存: ' . memory_get_usage().'字节'.'<br/>' ;
Solution two: recursion
<?php // 递归查询 error_reporting(E_ALL ^ E_NOTICE); $t1 = microtime(true); class optimal { public function getSortList($array,$index = 0,$up =0,&$result =[]) { for ($i=$index; $i < count($array); $i++) { if($index > 0 ){ $value['name'] = $up['name'].'+'.$array[$i]['type']; $value['amount'] = bcadd($up['amount'],$array[$i]['amount']); $value['technician'] = bcadd($up['technician'],$array[$i]['technician']); }else{ $value['name'] = $array[$i]['type']; $value['amount'] = bcadd($array[$i]['amount'],0); $value['technician'] = bcadd($array[$i]['technician'],0); } $result[] = $value; $this->getSortList($array,$i+1,$value,$result); } return $result ; } public function getMethod($postData) { $people = $postData['people']; $carDetail = $postData['carDetail']; $allResult = $this->getSortList($carDetail); $bestMatch = []; foreach ($allResult as $val) { if ($val['technician'] <= $people) { if ($bestMatch) { if ($val['amount'] > $bestMatch['amount']) { $bestMatch = $val; } }else{ $bestMatch = $val; } } } return $bestMatch; } } $optimal = new optimal(); if (empty($_POST) || isset($_POST['people']) && $_POST['people'] > 0) { die('提交参数有误'); } $bestMatch = $optimal->getMethod($_POST); $t2 = microtime(true); echo '递归查询: '.'<br/>'; echo '最佳金额: '.$bestMatch['amount'].'<br/>'; echo '最佳套餐搭配: '.$bestMatch['name'].'<br/>'; echo '耗时'.round($t2-$t1,7).'秒'.'<br/>' ; echo '消耗内存: ' . memory_get_usage().'字节'.'<br/>' ;
The above is the detailed content of PHP implements dynamic programming knapsack problem. For more information, please follow other related articles on the PHP Chinese website!

php把负数转为正整数的方法:1、使用abs()函数将负数转为正数,使用intval()函数对正数取整,转为正整数,语法“intval(abs($number))”;2、利用“~”位运算符将负数取反加一,语法“~$number + 1”。

实现方法:1、使用“sleep(延迟秒数)”语句,可延迟执行函数若干秒;2、使用“time_nanosleep(延迟秒数,延迟纳秒数)”语句,可延迟执行函数若干秒和纳秒;3、使用“time_sleep_until(time()+7)”语句。

php字符串有下标。在PHP中,下标不仅可以应用于数组和对象,还可应用于字符串,利用字符串的下标和中括号“[]”可以访问指定索引位置的字符,并对该字符进行读写,语法“字符串名[下标值]”;字符串的下标值(索引值)只能是整数类型,起始值为0。

php除以100保留两位小数的方法:1、利用“/”运算符进行除法运算,语法“数值 / 100”;2、使用“number_format(除法结果, 2)”或“sprintf("%.2f",除法结果)”语句进行四舍五入的处理值,并保留两位小数。

判断方法:1、使用“strtotime("年-月-日")”语句将给定的年月日转换为时间戳格式;2、用“date("z",时间戳)+1”语句计算指定时间戳是一年的第几天。date()返回的天数是从0开始计算的,因此真实天数需要在此基础上加1。

在php中,可以使用substr()函数来读取字符串后几个字符,只需要将该函数的第二个参数设置为负值,第三个参数省略即可;语法为“substr(字符串,-n)”,表示读取从字符串结尾处向前数第n个字符开始,直到字符串结尾的全部字符。

方法:1、用“str_replace(" ","其他字符",$str)”语句,可将nbsp符替换为其他字符;2、用“preg_replace("/(\s|\ \;||\xc2\xa0)/","其他字符",$str)”语句。

查找方法:1、用strpos(),语法“strpos("字符串值","查找子串")+1”;2、用stripos(),语法“strpos("字符串值","查找子串")+1”。因为字符串是从0开始计数的,因此两个函数获取的位置需要进行加1处理。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools