Big data learning route
java(Java se,javaweb)
Linux(shell , high concurrency architecture, lucene, solr)
Hadoop(Hadoop, HDFS, Mapreduce, yarn, hive, hbase, sqoop, zookeeper, flume)
Machine learning (R, mahout)
Storm(Storm,kafka,redis)
Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
Python(python,spark python)
Cloud computing platform (docker, kvm, openstack)
Explanation of terms:
1. Linux
lucene: Full-text search engine architecture
solr: A full-text search server based on lucene, which is configurable, scalable, optimizes query performance, and provides a complete function management interface .
2. Hadoop
HDFS: Distributed storage system, including NameNode, DataNode. NameNode: Metadata, DataNode. DataNode: stores data.
yarn: It can be understood as the coordination mechanism of MapReduce, which is essentially the processing and analysis mechanism of Hadoop, divided into ResourceManager and NodeManager.
MapReduce: Software framework, writing programs.
Hive: Data warehouse can be queried with SQL and can run Map/Reduce programs. Used to calculate trends or website logs, and should not be used for real-time queries as it takes a long time to return results.
HBase: Database. It is very suitable for real-time query of big data. Facebook uses Hbase to store message data and conduct real-time analysis of messages
ZooKeeper: A reliable coordination system for large-scale distributed. Hadoop's distributed synchronization is implemented by Zookeeper, such as multiple NameNodes and active standby switching.
Sqoop: Transfer databases to each other, relational databases and HDFS to each other
Mahout: Scalable machine learning and data mining library. Used for recommendation mining, aggregation, classification, and frequent item set mining.
Chukwa: An open source collection system that monitors large distributed systems, built on HDFS and Map/Reduce frameworks. Display, monitor, and analyze results.
Ambari: Used to configure, manage and monitor Hadoop clusters, based on the Web and with a friendly interface.
Related recommendations: "FAQ"
3. Cloudera
Cloudera Manager: Management Monitoring Diagnosis Integration
Cloudera CDH: (Cloudera's Distribution, including Apache Hadoop) Cloudera has made corresponding changes to Hadoop, and the distribution version is called CDH.
Cloudera Flume: Log collection system supports customizing various data senders in the log system to collect data.
Cloudera Impala: Provides direct query and interactive SQL for data stored in Apache Hadoop's HDFS and HBase.
Cloudera hue: web manager, including hue ui, hui server, hui db. hue provides shell interface interfaces for all CDH components, and mr can be written in hue.
4. Machine learning/R
R: Language and operating environment for statistical analysis and graphics, currently Hadoop-R
mahout : Provides scalable implementation of classic algorithms in the field of machine learning, including clustering, classification, recommendation filtering, frequent sub-item mining, etc., and can be extended to the cloud through Hadoop.
5. Storm
Storm: A distributed, fault-tolerant real-time streaming computing system that can be used for real-time analysis, online machine learning, information flow processing, and continuity Compute, distributed RPC, process messages in real time and update the database.
Kafka: A high-throughput distributed publish-subscribe messaging system that can handle all action streaming data (browsing, searching, etc.) in consumer-scale websites. Compared with Hadoop's log data and offline analysis, real-time processing can be achieved. Currently, Hadoop's parallel loading mechanism is used to unify online and offline message processing
Redis: Written in c language, it supports the network, is a log-type, key-value database that can be memory-based and persistent.
5. Spark
Scala: A completely object-oriented programming language similar to java.
jblas: A fast linear algebra library (JAVA). The ATLAS ART implementation is based on BLAS and LAPACK, the de facto industry standard for matrix calculations, and uses advanced infrastructure for all calculation procedures, making it very fast.
Spark: Spark is a general parallel framework similar to Hadoop MapReduce implemented in the Scala language. In addition to the advantages of Hadoop MapReduce, it is different from MapReduce in that the intermediate output results of jobs can be saved in memory, thus There is no need to read or write HDFS, so Spark is better suited to MapReduce algorithms that require iteration, such as data mining and machine learning. It can operate in parallel with the Hadoop file system. Third-party cluster frameworks using Mesos can support this behavior.
Spark SQL: As part of the Apache Spark big data framework, can be used for structured data processing and can perform SQL-like Spark data queries
Spark Streaming: A real-time solution built on Spark The computing framework extends Spark's ability to process big data streaming data.
Spark MLlib: MLlib is Spark's implementation library for commonly used machine learning algorithms. Currently (2014.05) it supports binary classification, regression, clustering and collaborative filtering. It also includes a low-level gradient descent optimization basic algorithm. MLlib relies on the jblas linear algebra library, and jblas itself relies on the remote Fortran program.
Spark GraphX: GraphX is an API for graphs and graph parallel computing in Spark. It can provide a one-stop data solution on top of Spark and can complete a complete set of pipeline operations for graph computing conveniently and efficiently.
Fortran: The earliest high-level computer programming language, widely used in scientific and engineering computing fields.
BLAS: Basic linear algebra subroutine library, with a large number of programs that have been written about linear algebra operations.
LAPACK: Well-known open software, including solving the most common numerical linear algebra problems in scientific and engineering calculations, such as solving linear equations, linear least squares problems, eigenvalue problems and singular value problems, etc.
ATLAS: An optimized version of the BLAS linear algorithm library.
Spark Python: Spark is written in scala language, but for promotion and compatibility, java and python interfaces are provided.
6. Python
Python: an object-oriented, interpreted computer programming language.
7. Cloud computing platform
Docker: Open source application container engine
kvm: (Keyboard Video Mouse)
openstack : Open source cloud computing management platform project
The above is the detailed content of What is the big data learning route?. For more information, please follow other related articles on the PHP Chinese website!

当您拥有大量数据时,分析数据通常会变得越来越困难。但真的必须如此吗?MicrosoftExcel提供了一个令人惊叹的内置功能,称为数据透视表,可用于轻松分析庞大的数据块。它们可用于通过创建您自己的自定义报告来有效地汇总您的数据。它们可用于自动计算列的总和,可以对其应用过滤器,可以对其中的数据进行排序等。可以对数据透视表执行的操作以及如何使用数据透视表为了缓解您的日常excel障碍是无止境的。继续阅读,了解如何轻松创建数据透视表并了解如何有效组织它。希望你喜欢阅读这篇文章。第1节:什么是数据透视

苹果以其对用户隐私的承诺而闻名。当您购买iPhone或Mac时,您知道您正在投资一家承诺保护您的数据的公司的产品。这在我们这个时代非常重要——因为我们越来越多地将更多的个人信息存储在这些设备上。我们使用的大多数设备都会收集使用数据以改进相应的产品和服务。例如,当应用程序在您的手机上崩溃时,可以通知开发人员以帮助他们查明此错误的原因。虽然这些数据通常是匿名的,但一些用户不喜欢让公司收集他们的日志。此外,通过共享这些诊断信息,您的设备会将它们上传到公司的服务器。这可能会耗尽您的(有限)数据计划和部分

了COLUMNS部分下的字段Item、ROWS部分下的字段Date和VALUES部分下的Profit字段。注意:如果您需要有关数据透视表如何工作以及如何有效地创建数据透视表的更多信息,请参阅我们的文章如何在MicrosoftExcel中创建数据透视表。因此,根据我的选择,我的数据透视表生成如下面的屏幕截图所示,使其成为我想要的完美摘要报告。但是,如果您查看数据透视表,您会发现我的数据透视表中有一些空白单元格。现在,让我们在接下来的步骤中将它们替换为零。第6步:要用零替换空白单元格,首先右键单击数

本文主要分享 Datacake 在大数据治理中,AI 算法的应用经验。本次分享分为五大部分:第一部分阐明大数据与 AI 的关系,大数据不仅可以服务于 AI,也可以使用 AI 来优化自身服务,两者是互相支撑、依赖的关系;第二部分介绍利用 AI 模型综合评估大数据任务健康度的应用实践,为后续开展数据治理提供量化依据;第三部分介绍利用 AI 模型智能推荐 Spark 任务运行参数配置的应用实践,实现了提高云资源利用率的目标;第四部分介绍在 SQL 查询场景中,由模型智能推荐任务执行引擎的实践;第五部分

Microsoft Excel有许多至今令人们惊叹的功能。人们每天都会学到一些新东西。今天,我们将了解如何在Excel图表中添加和自定义数据标签。Excel图表包含大量数据,一眼看懂图表可能具有挑战性。使用数据标签是指出重要信息的好方法。数据标签可以用作柱形图或条形图的一部分。当您创建饼图时,它甚至可以用作标注。添加数据标签为了展示如何添加数据标签,我们将以饼图为例。虽然大多数人使用图例来显示饼图中的内容,但数据标签的效率要高得多。要添加数据标签,请创建饼图。打开它,然后单击显示图表设计

近年来,大数据加大模型成为了AI领域建模的标准范式。在广告场景,大模型由于使用了更多的模型参数,利用更多的训练数据,模型具备了更强的记忆能力和泛化能力,为广告效果向上提升打开了更大的空间。但是大模型在训练过程中所需要的资源也是成倍的增长,存储以及计算上的压力对机器学习平台都是巨大的挑战。腾讯太极机器学习平台持续探索降本增效方案,在广告离线训练场景利用混合部署资源大大降低了资源成本,每天为腾讯广告提供50W核心廉价混合部署资源,帮助腾讯广告离线模型训练资源成本降低30%,同时通过一系列优化手段使得

随着数据规模逐渐增大,大数据分析变得越来越重要。而Go语言作为一门快速、轻量级的编程语言,也成为了越来越多数据科学家和工程师的选择。本文将介绍如何使用Go语言进行大数据分析。数据采集在开始大数据分析之前,我们需要先采集数据。Go语言有很多包可以用于数据采集,例如“net/http”、“io/ioutil”等。通过这些包,我们可以从网站、API、日志

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Chinese version
Chinese version, very easy to use
