Home >Backend Development >Python Tutorial >What does range mean in python?

What does range mean in python?

藏色散人
藏色散人Original
2019-06-29 11:15:0732169browse

What does range mean in python?

The python range() function creates a list of integers and is generally used in for loops.

Function syntax

range(start, stop[, step])

Parameter description:

start: Counting starts from start. The default is to start from 0. For example, range(5) is equivalent to range(0, 5);

stop: counts to the end of stop, but does not include stop. For example: range (0, 5) is [0, 1, 2, 3, 4] without 5

step: step size, default is 1. For example: range(0, 5) is equivalent to range(0, 5, 1)

Example

>>>range(10)        # 从 0 开始到 10
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)     # 从 1 开始到 11
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)  # 步长为 5
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)  # 步长为 3
[0, 3, 6, 9]
>>> range(0, -10, -1) # 负数
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]
以下是 range 在 for 中的使用,循环出runoob 的每个字母:
 
>>>x = 'runoob'
>>> for i in range(len(x)) :
...     print(x[i])
... 
r
u
n
o
o
b
>>>
 
在tensorflow python 3.6的环境下,range函数中实参必须为int型,否则报错
 
def load_dataset(data_dir, img_size):
"""img_files = os.listdir(data_dir)
test_size = int(len(img_files)*0.2)
test_indices = random.sample(range(len(img_files)),test_size)
for i in range(len(img_files)):
#img = scipy.misc.imread(data_dir+img_files[i])
if i in test_indices:
test_set.append(data_dir+"/"+img_files[i])
else:
train_set.append(data_dir+"/"+img_files[i])
return"""
global train_set
global test_set
imgs = [] 
img_files = os.listdir(data_dir)
for img in img_files:
try:
tmp= scipy.misc.imread(data_dir+"/"+img)
x,y,z = tmp.shape
coords_x = x // img_size
coords_y = y // img_size
           
#coords_y = y / img_size
#                       coords_x = x / img_size
            
            #print (coords_x)
coords = [ (q,r) for q in range(coords_x) for r in range(coords_y) ]
for coord in coords:
imgs.append((data_dir+"/"+img,coord))
except:
print ("oops")
test_size = min(10,int( len(imgs)*0.2))
random.shuffle(imgs)
test_set = imgs[:test_size]
train_set = imgs[test_size:][:200]
return
def get_batch(batch_size,original_size,shrunk_size):
global batch_index
"""img_indices = random.sample(range(len(train_set)),batch_size)
for i in range(len(img_indices)):
index = img_indices[i]
img = scipy.misc.imread(train_set[index])
if img.shape:
img = crop_center(img,original_size,original_size)
x_img = scipy.misc.imresize(img,(shrunk_size,shrunk_size))
x.append(x_img)
y.append(img)"""
max_counter = len(train_set)/batch_size   
counter = batch_index % max_counter
#counter = tf.to_int32(batch_index % max_counter)    
window = [x for x in range(int(counter*batch_size),int((counter+1)*batch_size))]
 
#window = [x for x in range(tf.to_int32(counter*batch_size),tf.to_int32((counter+1)*batch_size))]
#window = [x for x in np.arange((counter*batch_size),((counter+1)*batch_size))]
#a1=tf.cast(counter*batch_size,tf.int32)
#a2=tf.cast((counter+1)*batch_size,tf.int32)
#window = [x for x in range(a1,a2)]
#window = [x for x in np.arange(a1,a2)]
#win2 = tf.cast(window,tf.int32)
#win2 = tf.to_int32(window)
#win2 = tf.to_int64(window)
 
imgs = [train_set[q] for q in window]
x = [scipy.misc.imresize(get_image(q,original_size),(shrunk_size,shrunk_size)) for q in imgs]#scipy.misc.imread(q[0])[q[1][0]*original_size:(q[1][0]+1)*original_size,q[1][1]*original_size:(q[1][1]+1)*original_size].resize(shrunk_size,shrunk_size) for q in imgs]
y = [get_image(q,original_size) for q in imgs]#scipy.misc.imread(q[0])[q[1][0]*original_size:(q[1][0]+1)*original_size,q[1][1]*original_size:(q[1][1]+1)*original_size] for q in imgs]
batch_index = (batch_index+1)%max_counter

Related recommendations: "Python Tutorial

The above is the detailed content of What does range mean in python?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn