search
HomeBackend DevelopmentPython TutorialWhat tools to use for python data analysis?

Python can be used for data analysis, but it still has certain limitations in relying solely on Python's own libraries for data analysis. It is necessary to install third-party extension libraries to enhance analysis and mining capabilities.

What tools to use for python data analysis?

1. Pandas (Recommended learning: Python video tutorial)

Pandas is a powerful and flexible version of Python Data analysis and exploration tools, including Series, DataFrame and other advanced data structures and tools. Installing Pandas can make data processing in Python very fast and simple.

Pandas is a data analysis package for Python. Pandas was originally developed as a financial data analysis tool, so Pandas provides good support for time series analysis.

Pandas was created to solve data analysis tasks. Pandas incorporates a large number of libraries and some standard data models to provide the tools needed to efficiently operate large data sets. Pandas provides a large number of functions and methods for us to process data quickly and conveniently. Pandas includes advanced data structures and tools that make data analysis fast and easy. It is built on Numpy, making Numpy applications easy.

2. Numpy

Python does not provide array functions. Numpy can provide array support and corresponding efficient processing functions. It is the basis for Python data analysis, as well as SciPy and Pandas. It is the most basic function library for data processing and scientific computing libraries, and its data types are very useful for Python data analysis.

3. Matplotlib

Matplotlib is a powerful data visualization tool and drawing library. It is a Python library mainly used for drawing data charts and provides various visualization graphics. The command font library and simple interface make it easy for users to master graphic formats and draw various visual graphics.

4. SciPy

SciPy is a collection of packages specifically designed to solve various standard problem areas in scientific computing. It includes functions such as optimization, linear algebra, Integration, interpolation, fitting, special functions, fast Fourier transform, signal processing and image processing, solving ordinary differential equations and other calculations commonly used in science and engineering are very useful for data analysis and mining.

Scipy is a convenient, easy-to-use Python package specially designed for science and engineering. It includes statistics, optimization, integration, linear algebra modules, Fourier transform, signal and image processing, and ordinary differential equations. Solver etc. Scipy depends on Numpy and provides many user-friendly and efficient numerical routines such as numerical integration and optimization.

5. Keras

Keras is a deep learning library, artificial neural network and deep learning model. It is based on Theano and relies on Numpy and Scipy. It can be used to build Ordinary neural networks and various deep learning models, such as language processing, image recognition, autoencoders, recurrent neural networks, recursive audit networks, convolutional neural networks, etc.

6. Scikit-Learn

Scikit-Learn is a commonly used machine learning toolkit for Python. It provides a complete machine learning toolbox and supports data preprocessing and classification. , regression, clustering, prediction and model analysis and other powerful machine learning libraries, which rely on Numpy, Scipy and Matplotlib, etc.

Scikit-Learn is a Python machine learning module based on the BSD open source license.
The installation of Scikit-Learn requires modules such as Numpy Scopy Matplotlib. The main functions of Scikit-Learn are divided into six parts, classification, regression, clustering, data dimensionality reduction, model selection, and data preprocessing.

7. Scrapy

Scrapy is a tool specially designed for crawlers. It has functions such as URL reading, HTML parsing, and data storage. You can use Twisted The asynchronous network library handles network communication, has a clear structure, and contains various middleware interfaces, which can flexibly fulfill various needs.

8. Gensim

Gensim is a library used to make text topic models. It is often used to handle language tasks and supports TF-IDF, LSA, LDA and Word2Vec. It supports a variety of topic model algorithms, including streaming training, and provides API interfaces for some common tasks such as similarity calculation and information retrieval.

For more Python related technical articles, please visit the Python Tutorial column to learn!

The above is the detailed content of What tools to use for python data analysis?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download

Atom editor mac version download

The most popular open source editor