search
HomeBackend DevelopmentPython TutorialWhat is an artificial neural network algorithm?

What is an artificial neural network algorithm?

Jun 10, 2019 pm 02:37 PM
artificial neural network algorithm

What is an artificial neural network algorithm?

Many algorithms of artificial neural networks have been widely used in intelligent information processing systems, especially the following four algorithms: ART network, LVQ network, Kohonen network Hopfield network, below Let’s introduce these four algorithms in detail:

1. Adaptive Resonance Theory (ART) Network

The Adaptive Resonance Theory (ART) network has different schemes. An ART-1 network contains two layers, an input layer and an output layer. The two layers are fully interconnected, with the connections proceeding in both forward (bottom-up) and feedback (top-down) directions.

When the ART-1 network is working, its training is continuous and includes the following algorithm steps:

(1) For all output neurons, if all of an output neuron If the warning weights are all set to 1, it is called an independent neuron because it is not specified to represent any pattern type.

(2) Give a new input pattern x.

(3) Enable all output neurons to participate in excitation competition.

(4) Find the winning output neuron from the competing neurons, that is, the x·W value of this neuron is the largest; at the beginning of training or when there is no better output neuron, the winning neuron The neuron may be an independent neuron.

(5) Check whether the input pattern x is similar enough to the vigilance vector V of the winning neuron.

(6) If r≥p, that is, resonance exists, go to step (7); otherwise, make the winning neuron temporarily unable to compete further, and go to step (4), and repeat this process until it does not exist as many capable neurons as possible.

What is an artificial neural network algorithm?

2. Learning vector quantization (LVQ) network

Learning vector quantization (LVQ) network consists of three layers of neurons, namely the input conversion layer, the hidden layer and the output layer. The network is fully connected between the input and hidden layers and partially connected between the hidden and output layers, with each output neuron connected to a different group of hidden neurons.

The simplest LVQ training steps are as follows:

(1) Preset the initial weight of the reference vector.

(2) Provide the network with a training input pattern.

(3) Calculate the Euclidean distance between the input pattern and each reference vector.

(4) Update the weight of the reference vector closest to the input pattern (that is, the reference vector of the winning hidden neuron). If the winning hidden neuron belongs to the buffer connected to the output neuron with the same class as the input pattern, then the reference vector should be closer to the input pattern. Otherwise, the reference vector leaves input mode.

(5) Go to step (2) and repeat this process with a new training input pattern until all training patterns are correctly classified or a termination criterion is met.

What is an artificial neural network algorithm?

3. Kohonen network

Kohonen network or self-organizing feature map network contains two layers, one input buffer layer is used to receive the input pattern, and the other is the output layer. The neurons in the output layer are generally regular two-dimensional arrays. Arrange, each output neuron is connected to all input neurons. The connection weights form components of the reference vector connected to known output neurons.

Training a Kohonen network includes the following steps:

(1) Preset small random initial values ​​for the reference vectors of all output neurons.

(2) Provide the network with a training input pattern.

(3) Determine the winning output neuron, that is, the neuron whose reference vector is closest to the input pattern. The Euclidean distance between the reference vector and the input vector is often used as a distance measurement.

(4) Update the reference vector of the winning neuron and its neighbor reference vectors. These reference vectors are (referenced to) closer to the input vectors. For the winning reference vector, its adjustment is the largest, while for neurons further away, the size of the neuron neighborhood decreases relatively as training proceeds. By the end of training, there is only the reference of the winning neuron. The vector is adjusted.

What is an artificial neural network algorithm?

#4. Hopfield network

Hopfield network is a typical recursive network that usually only accepts binary inputs (0 or 1) and bipolar inputs (1 or -1). It contains a single layer of neurons, each connected to all other neurons, forming a recursive structure.

The above is the detailed content of What is an artificial neural network algorithm?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?Apr 02, 2025 am 07:12 AM

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.