Binary search is also called binary search, which is a more efficient search method. However, binary search requires that the linear table must adopt a sequential storage structure, and the elements in the table must be arranged in order by keywords.
Search process
First, assuming that the elements in the table are arranged in ascending order, record the key in the middle of the table The word is compared with the search keyword. If the two are equal, the search is successful; otherwise, the middle position record is used to divide the table into the first and last sub-tables. If the keyword recorded in the middle position is greater than the search keyword, the previous sub-table is further searched. , otherwise search further for the next sub-table. Repeat the above process until a record that meets the conditions is found, making the search successful, or until the subtable does not exist, in which case the search fails.
Number of comparisons
Calculation formula:
When the sequence table has n keywords:
When the search fails, compare the keyword at least a times; when the search succeeds, the maximum number of keyword comparisons is b.
Note: a, b, n are all positive integers.
Algorithm complexity
The basic idea of binary search is to divide n elements into two roughly equal parts, and compare a[n/2] with x, If x=a[n/2], then x is found and the algorithm is terminated; if xa[n/2], Then just search for x in the right half of array a.
The time complexity is nothing more than the number of while loops!
There are n elements in total,
gradually follows n, n/2, n/4,....n/2^k (the remaining number of elements will be operated next ), where k is the number of loops
Since after you round n/2^k>=1
, you can get n/2^k=1
k=log2n, (based on base 2, the logarithm of n)
So the time complexity can be expressed as O(h)=O(log2n)
The following provides a bisection Find the pseudocode of the implementation:
BinarySearch(max,min,des)
mid-
while(min
mid=(min max)/2
if mid=des then
return mid
elseif mid >des then
max=mid-1
else
min=mid 1
return max
The half search method is also called the binary search method. It makes full use of the order relationship between elements and adopts the divide-and-conquer strategy, which can complete the search task in O(log n) in the worst case. Its basic idea is: (assuming that the array elements are arranged in ascending order) divide n elements into two halves with roughly the same number, take a[n/2] and compare it with the x you want to find, if x=a[n/ 2] then x is found and the algorithm terminates; if x
The above is the detailed content of binary search algorithm. For more information, please follow other related articles on the PHP Chinese website!

如何使用C#编写二分查找算法二分查找算法是一种高效的查找算法,它在有序数组中查找特定元素的位置,时间复杂度为O(logN)。在C#中,我们可以通过以下几个步骤来编写二分查找算法。步骤一:准备数据首先,我们需要准备一个已经排好序的数组作为查找的目标数据。假设我们要在数组中查找特定元素的位置。int[]data={1,3,5,7,9,11,13

我们知道二分查找方法是一种最适合和有效的排序算法。这个算法适用于已排序的序列。算法很简单,它只是从中间找到元素,然后将列表分成两部分,并向左子列表或右子列表移动。我们知道它的算法。现在我们将看到如何在多线程环境中使用二分查找技术。线程的数量取决于系统中存在的核心数。让我们看一下代码以了解思路。示例#include<iostream>#defineMAX16#defineMAX_THREAD4usingnamespacestd;//placearr,keyandothervariabl

如何使用Java实现二分查找算法二分查找算法是一种高效的查找方法,适用于已排序的数组。它的基本思想是不断缩小查找范围,将查找值与数组中间的元素进行比较,并根据比较结果决定继续查找左半部分还是右半部分,直到找到目标元素或查找范围缩小为空。下面我们来具体介绍如何用Java实现二分查找算法。步骤一:实现二分查找方法publicclassBinarySearch

如何使用Python实现二分查找算法?二分查找算法,也称为折半查找算法,是一种高效的查找算法。它适用于有序的数组或列表,通过将目标值与数组中间位置的元素进行比较,从而缩小查找范围。下面将介绍如何在Python中实现二分查找算法,并提供具体的代码示例。算法思路:将目标值与数组中间位置的元素进行比较;如果相等,则返回元素位置;如果目标值大于中间位置的元素,则在右

C编程语言提供了两种搜索技术。它们如下所示:线性搜索二分搜索二分搜索这种方法只适用于有序列表。给定列表被分成两个相等的部分。给定的关键字与列表的中间元素进行比较。在这里,可能会发生三种情况,如下所示:如果中间元素与关键字匹配,则搜索将在此成功结束如果中间元素大于关键字,则搜索将在左侧分区进行。如果中间元素小于关键字,则搜索将在右侧分区进行。输入(i/p)-未排序的元素列表,关键字。输出(o/p)-成功-如果找到关键字失败-否则key=20mid=(low+high)/2程序1以下是使用二分查找在

立方根是一个整数值,当它自己连续乘以自己三次时,得到原始数值。在本文中,我们将编写一个使用二分搜索来找到一个数的立方根的Java程序。找到一个数的立方根是二分搜索算法的一个应用之一。在本文中,我们将详细讨论如何使用二分搜索来计算立方根。输入-输出示例Example-1:Input:64Output:4如,64的立方根为4,输出为4。Example-2:Input:216Output:6如,216的立方根为6,输出为6。二分查找二分搜索是一种用于查找元素(即排序数组中的键)的算法。二进制算法的工作

在这个问题中,我们得到了一个有理数的排序数组。我们必须使用二分搜索算法来搜索该有理数数组的给定元素,而不使用浮点运算。有理数是以p/q形式表示的数字,其中p和q都是整数。例如,⅔、⅕。二分搜索是一种搜索技术,通过查找数组的中间来查找元素。用于查找使用二分法搜索有理数排序数组中的元素,其中不允许浮点运算。我们将比较分子和分母,以找出哪个元素更大或哪个元素是要找到的元素。示例让我们为此创建一个程序,#include<stdio.h>structRational{ &am

PHP算法解析:如何使用二分查找算法在有序数组中快速定位元素?概述:二分查找算法是一种高效的查找算法,它适用于有序数组中查找特定元素。本文将详细介绍二分查找算法的原理,并给出PHP代码示例。原理:二分查找算法通过反复将查找范围缩小一半,从而快速定位目标元素。其流程如下:首先,将查找范围缩小为数组的开头和结尾;然后,计算中间元素的索引,将其与目标元素进行比较;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
