Methods to optimize mysql database: establish Index index, use less select statements, enable query caching, choose a suitable storage engine, avoid using or in the where clause to connect and avoid returning large amounts of data, etc.
For a data-centric application, the quality of the database directly affects the performance of the program, so database performance is crucial. Therefore, everyone must understand the optimization operations of mysql database. This article mainly summarizes the common optimization operations in mysql database. I won’t go into more details below, let’s take a look at the detailed introduction.
1. Index index
Put Index first. Needless to say, we have been quietly doing this optimization method Use, that is the primary key index. Sometimes we may not care. If a suitable index is defined, the database query performance (speed) will be improved several times or even dozens of times.
2. Use SELECT sparingly*
Some people may select whatever they want to query when querying the database. This is inappropriate behavior. We should get the data we want to use, not all, because when we select, it will increase the burden on the web server, increase the load on network transmission, and the query speed will naturally decrease.
3. EXPLAIN SELECT
It is estimated that many people have never seen this function, but it is highly recommended to use it. explain shows how mysql uses indexes to handle select statements and join tables. It can help choose better indexes and write more optimized query statements. The main use is to add explain before select.
EXPLAIN SELECT [查找字段名] FROM tab_name ...
4. Turn on query cache
Most MySQL servers have query cache turned on. This is one of the most effective ways to improve performance, and it's handled by the MySQL database engine. When many of the same queries are executed multiple times, these query results will be placed in a cache, so that subsequent identical queries do not need to operate the table but directly access the cached results.
The first step is to set query_cache_type to ON, and then query whether the system variable have_query_cache is available:
show variables like 'have_query_cache'
After that, allocate the memory size to the query cache and control the maximum value of cached query results. Relevant operations are modified in the configuration file.
5. Use NOT NULL
Many tables contain columns that can be NULL (null value), even if the application does not need to save NULL, this is Because NULL is the default property of the column. It is usually best to specify columns as NOT NULL unless you really need to store NULL values.
If the query contains NULL columns, it is more difficult for MySQL to optimize because NULL columns make indexes, index statistics, and value comparisons more complex. Columns that can be NULL use more storage space and require special handling in MySQL. When NULLable columns are indexed, each index record requires an extra byte, which in MyISAM can even cause a fixed-size index (such as an index with only one integer column) to become a variable-size index.
Usually the performance improvement brought by changing the NULL column to NOT NULL is relatively small, so (when tuning) there is no need to first search and modify this situation in the existing schema. Unless you are sure this will cause a problem. However, if you plan to build an index on a column, you should try to avoid designing the column to be NULL. Of course, there are exceptions. For example, it is worth mentioning that InnoDB uses a separate bit to store NULL values, so it has good space efficiency for sparse data. But this does not apply to MyISAM.
6. Selection of storage engine
Regarding how to choose MyISAM and InnoDB, if you need transaction processing or foreign keys, then InnoDB may be a better way. If you need full-text indexing, then MyISAM is usually a good choice because it is built into the system. However, we don't actually test 2 million rows of records very often. So, even if it's a little slower, we can get a full-text index from InnoDB by using Sphinx.
The size of the data is an important factor that affects what storage engine you choose. Large-size data sets tend to choose InnoDB because it supports transaction processing and failure recovery. The size of the database determines the length of fault recovery time. InnoDB can use transaction logs for data recovery, which will be faster. While MyISAM may take
several hours or even days to do these things, InnoDB only takes a few minutes.
Your habit of operating database tables may also be a factor that greatly affects performance. For example: COUNT() will be very fast in MyISAM table, but may be painful in InnoDB table. The primary key query will be quite fast under InnoDB, but we need to be careful that if our primary key is too long, it will also cause performance problems. A large number of inserts statements will be faster under MyISAM, but updates will be faster under InnoDB - especially when the amount of concurrency is large.
所以,到底你检使用哪一个呢?根据经验来看,如果是一些小型的应用或项目,那么MyISAM也许会更适合。当然,在大型的环境下使用MyISAM也会有很大成功的时候,但却不总是这样的。如果你正在计划使用一个超大数据量的项目,而且需要事务处理或外键支持,那么你真的应该直接使用InnoDB方式。但需要记住InnoDB的表需要更多的内存和存储,转换100GB的MyISAM 表到InnoDB 表可能会让你有非常坏的体验。
七、避免在 where 子句中使用 or 来连接
如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or Name = 'admin'
可以这样查询:
select id from t where num = 10 union all select id from t where Name = 'admin'
八、多使用varchar/nvarchar
使用varchar/nvarchar代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
九、避免大数据量返回
这里要考虑使用limit,来限制返回的数据量,如果每次返回大量自己不需要的数据,也会降低查询速度。
十、where子句优化
where 子句中使用参数,会导致全表扫描,因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。
应尽量避免在 where 子句中对字段进行表达式操作,避免在where子句中对字段进行函数操作这将导致引擎放弃使用索引而进行全表扫描。不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
相关学习推荐:mysql教程(视频)
The above is the detailed content of How to optimize mysql database. For more information, please follow other related articles on the PHP Chinese website!

随着数据量的不断增加,数据库的性能成为了一个越来越重要的问题。数据冷热分离处理是一种有效的解决方案,它可以将热点数据和冷数据进行分离,从而提高系统的性能和效率。本文将介绍如何使用Go语言和MySQL数据库进行数据冷热分离处理。一、什么是数据冷热分离处理数据冷热分离处理是一种将热点数据和冷数据进行分类处理的方式。热点数据是指访问频率高、对性能要求高的数据,冷数

随着数据量的增加,数据库的备份变得越来越重要。而对于MySQL数据库,我们可以借助Go语言实现自动化的增量备份。本篇文章将简单介绍如何使用Go语言进行MySQL数据库的数据增量备份。一、安装Go语言环境首先,我们需要在本地安装Go语言环境。可以前往官网下载相应的安装包并进行安装。二、安装相应的库Go语言提供了许多访问MySQL数据库的第三方库,其中较为常用的

如何使用MySQL数据库进行时间序列分析?时间序列数据是指按照时间顺序排列的数据集合,它具有时间上的连续性和相关性。时间序列分析是一种重要的数据分析方法,可以用于预测未来趋势、发现周期性变化、检测异常值等。在本文中,我们将介绍如何使用MySQL数据库进行时间序列分析,并附上代码示例。创建数据表首先,我们需要创建一个数据表来存储时间序列数据。假设我们要分析的数

随着大量的数据需要存储和处理,MySQL已经成为了应用开发中最常用的关系型数据库之一。而Go语言由于其高效并发处理和简洁的语法,也越来越受到开发者的欢迎。本文就将带领读者通过Go语言实现可靠的MySQL数据库连接,让开发者能够更加高效地查询和存储数据。一、Go语言连接MySQL数据库的几种方式Go语言中连接MySQL数据库通常有3种方式,分别是:1.第三方库

随着业务的增长和数据库版本升级等因素,数据库迁移变得越来越普遍。在进行数据迁移时,选择合适的工具和语言非常重要。本文将介绍如何使用Go语言进行MySQL数据库的数据迁移。安装MySQL驱动在使用Go语言进行MySQL数据库迁移前,需要首先安装MySQL驱动。在Go语言中,有很多MySQL驱动可供选择。在本文中,我们将选择最常用的官方MySQL驱动包-"dat

近年来,Go语言越来越受到开发人员的青睐,成为开发高性能Web应用程序的首选语言之一。MySQL也作为一种流行的数据库,使用广泛。在将这两个技术结合起来使用的过程中,缓存处理是非常重要的一环。下面将介绍如何使用Go语言来处理MySQL数据库的缓存。缓存的概念在Web应用程序中,缓存是为了加快数据的访问速度而创建的一种中间层。它主要用于存储经常被请求的数据,以

MySQL创建标签表实现文章标签功能的实现步骤标签是一种常用的分类方式,它可以帮助我们更好地组织和检索文章。在许多网站和应用程序中,都会有文章标签的功能。本文将介绍如何使用MySQL创建标签表,并实现文章标签的功能。步骤1:创建标签表首先,我们需要创建一个用于存储标签的表。在MySQL中,可以使用以下命令创建标签表:CREATETABLEtags(

随着互联网和大数据时代的到来,数据处理成为了一项必备的技能。MySQL作为目前世界上最流行的关系型数据库管理系统,一直以来在数据处理领域受到了广泛的应用。MySQL具有性能高、易用性好、灵活性强等优点,但数据导入导出过程中可能会存在重复或无效数据,因此本文将介绍如何使用Go语言进行MySQL数据库的数据导入导出过滤的方法。一、环境搭建安装MySQL数据库在开


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor
