Home > Article > Web Front-end > Let you easily understand the KMP algorithm
KMP (The Knuth-Morris-Pratt Algorithm) algorithm is used for string matching to find a given substring from a string. But it's not very easy to understand and master. Understanding the partial matching table in its concept is the key to understanding the KMP algorithm. The discussion here avoids the obscure logic behind it and focuses on understanding it from its application. String searchFor example, find the Simple solution, we can do this,
The disadvantage of this simple solution is that every time the matching fails, the index is only moved back one position, which has many redundant operations and is not efficient. In the first round of matching, that is, when the index is 0, we can match the first four characters Partial Match Table/Partial Match TableTake a string of length 8 <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">char: | a | b | a | b | a | b | c | a |<br>index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | <br>value: | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 |</span> The SubsetFor the above example string, if we observe the position where Prefix & SuffixFor a given string, remove one or more characters from the end, and the remaining part is called the true value of the string Prefix (Proper prefix), hereinafter referred to as prefix. "True" here does not mean "true prefix". Think of the "proper subset" of a set in mathematics. For example,
banana
It can be seen that all prefixes and suffixes are symmetrical in quantity. Then we can find one from the prefix and match it with the suffix. Let’s not start with Care about the meaning of this match. Take the initial text abababcaas an example.
aba
For another example, let’s observe the position where , and the suffix and suffix at this time are:
For another example, let’s observe the position where , and the suffix and suffix are:
So now let’s look at the partial matching table above. First, we can understand how its value comes from, and second, we can understand the meaning of its representation, that is, the longest length among all the matches of prefixes and suffixes. The length of that one. is 6, the substring is abababc. As can be expected, no match is found in the suffix and suffix. Because all prefixes do not contain and all suffixes end with Using the above partial matching value, when we perform string search, we don’t have to move only one bit after each failure, but Multiple bits can be moved to remove some redundant matches. There is a formula here as follows:If a partial match of length partial_match_length is found and table[partial_match_length] > 1, we may skip ahead partial_match_length - table[partial_match_length - 1] characters. 如果匹配过程中,匹配到了部分值为 下面是本文开始时的那个部分匹配表: <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">char: | a | b | a | b | a | b | c | a |<br>index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | <br>value: | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 |</span> 假设需要从 首次匹配发生在总字符串的第二个字符, <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">bacbababaabcbab |<br> abababca</span> 此时匹配的长度为 1,部分匹配表中索引为 1-1=0 的位置对应的部分匹配值为 0,所以我们可以向前移动的距离是 继续直到再次发生匹配,此时匹配到的情况如下: <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">bacbababaabcbab |||||<br> abababca</span> 现在匹配到的长度是 5,部分匹配表中 5-1=4 对应的部分匹配值为 3,所以我们可以向前移动 5-3=2,此时一下子就可以移动两位了。 <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif"> 上一次的位置 | 最新移动到的位置 | |bacbababaabcbab<br> xx|||<br> abababca</span> 此时匹配到的长度为 3, 查找到 3-1=2。 <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">bacbababaabcbab<br> xx|<br> abababca</span> 此时我们需要查找的字符串其长度已经超出剩余可用来匹配的字符串了,所以可直接结束匹配,得到结论:没有查找到结果。 Javascript 中的实现以下是来自 trekhleb/javascript-algorithms 中 JavaScript 版本的 KMP 算法实现: 相关教程:Javascript视频教程 <span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif">//**<br/> * @see https://www.youtube.com/watch?v=GTJr8OvyEVQ<br/> * @param {string} word<br/> * @return {number[]}<br/> */<br/>function buildPatternTable(word) {<br/> const patternTable = [0];<br/> let prefixIndex = 0;<br/> let suffixIndex = 1;<br/><br/> while (suffixIndex < word.length) {<br/> if (word[prefixIndex] === word[suffixIndex]) {<br/> patternTable[suffixIndex] = prefixIndex + 1;<br/> suffixIndex += 1;<br/> prefixIndex += 1;<br/> } else if (prefixIndex === 0) {<br/> patternTable[suffixIndex] = 0;<br/> suffixIndex += 1;</span><span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif"><br/></span><span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif"> } else {<br/> prefixIndex = patternTable[prefixIndex - 1];<br/> }<br/> }<br/><br/> return patternTable;<br/>}<br/><br/>/**<br/> * @param {string} text<br/> * @param {string} word<br/> * @return {number}<br/> */<br/>export default function knuthMorrisPratt(text, word) {<br/> if (word.length === 0) {<br/> return 0;</span><span style="font-family:Microsoft Yahei, Hiragino Sans GB, Helvetica, Helvetica Neue, 微软雅黑, Tahoma, Arial, sans-serif"><br/> }<br/><br/> let textIndex = 0;<br/> let wordIndex = 0;<br/><br/> const patternTable = buildPatternTable(word);<br/><br/> while (textIndex < text.length) {<br/> if (text[textIndex] === word[wordIndex]) {<br/> // We've found a match.<br/> if (wordIndex === word.length - 1) {<br/> return (textIndex - word.length) + 1;<br/> }<br/> wordIndex += 1;<br/> textIndex += 1;<br/> } else if (wordIndex > 0) {<br/> wordIndex = patternTable[wordIndex - 1];<br/> } else {<br/> wordIndex = 0;<br/> textIndex += 1;<br/> }<br/> }<br/><br/> return -1;<br/>}<br/></span> 时间复杂度 因为算法中涉及两部分字符串的线性对比,其时间复杂度为两字符串长度之和,假设需要搜索的关键词长度为 k,总字符串长度为 m,则时间复杂度为 O(k+m)。 |
The above is the detailed content of Let you easily understand the KMP algorithm. For more information, please follow other related articles on the PHP Chinese website!