


Introduction to 5 commonly used built-in higher-order functions in Python (with code)
This article brings you an introduction to 5 commonly used built-in high-order functions in Python (with code). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you. help.
Python has built-in commonly used higher-order functions:
1. Functional programming
The function itself can be assigned to a variable, and the variable becomes a function after the assignment;
Allows the function itself to be passed into another function as a parameter;
allows a function to be returned.
1. map() function
is a built-in higher-order function in Python. It receives a function f and a list,
and passes Function f acts on each element of the list in turn, obtains a new list and returns
def add(x): return x+x print(map(add,[1, 2, 3])) # Out:<map object at 0x00000239E833DE48> print(list(map(add,[1, 2, 3]))) # Out:[2, 4, 6]
2, reduce() function
The reduce() function is also a high-order function built into Python.
The parameters received by the reduce() function are similar to map(), a function f and a list, but the behavior is different from map(). The function f passed in by reduce() must receive two parameters,
reduce() repeatedly calls function f on each element of the list and returns the final result value.
In Python3, the reduce() function has been removed from the global namespace. It is now placed in the functools module. If you want to use it,
You need to import it through functools module to call the reduce() function:
from functools import reduce def prod(x, y): return x*y print(reduce(prod, [2, 4, 5, 7, 12])) # Out:3360 # 2*4*5*7*12 # reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100 print(reduce(prod, [2, 4, 5, 7, 12], 100)) # Out:336000 # 2*4*5*7*12*100
3, filter() function
is another useful built-in Python A higher-order function, the filter() function receives a function f and a list.
The function of this function f is to judge each element and return True or False. filter() automatically filters out the elements based on the judgment result. For elements that do not meet the conditions,
returns a new list consisting of elements that meet the conditions.
import math def is_sqr(x): return math.sqrt(x) == int(math.sqrt(x)) print(list(filter(is_sqr, range(1, 101)))) # Out:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
4, sorted() function
Performs sorting operation on all iterable objects.
The difference between sort and sorted:
sort is a method applied to a list, and sorted can sort all iterable objects. The sort method of
list returns an operation on an existing list, while the built-in function sorted method returns a new list rather than an operation based on the original one.
sorted(iterable, key=None, reverse=False)
iterable -- Iterable object.
key -- Mainly used for comparison elements, with only one parameter. The parameters of the specific function are taken from the iterable object, and an element in the iterable object is specified for sorting.
reverse -- Sorting rule, reverse = True for descending order, reverse = False for ascending order (default).
Return the reordered list
print(sorted([5, 2, 3, 1, 4])) # Out:[1, 2, 3, 4, 5] print(sorted({1:'D', 2:'B', 3:'B', 4:'E', 5: 'A'})) # Out:[1, 2, 3, 4, 5]
Use key to sort in reverse order
example_list = [5, 0, 6, 1, 2, 7, 3, 4] result_list = sorted(example_list, key=lambda x: x*-1) print(result_list)
To reverse sort, you can also pass in The third parameter reverse=True:
example_list = [5, 0, 6, 1, 2, 7, 3, 4] print(sorted(example_list, reverse=True)) # Out:[7, 6, 5, 4, 3, 2, 1, 0]
5. Python functions can not only return data types such as int, str, list, dict, etc., but also return functions!
Please pay attention to distinguishing the return function and the return value:
def my_abs(): return abs # 返回函数,返回函数可以把一些计算延迟 def my_abs2(x): return abs(x) # 返回函数调用的结果,返回值是一个数值
def calc_prod(lst): def lazy_prod(): prod = 1 for i in lst: prod = prod*i return prod return lazy_prod f = calc_prod([1, 2, 3, 4]) print(f()) # Out:24
5.1. Why define the lazy_prod() function and the return function cal_prod()?
Python supports the basic syntax of the return function
def f(): print('call f()...') # 定义函数g: def g(): print('call g()...') # 返回函数g: return g
Only the role of the return function:
The return function can delay the execution of some calculations. For example, if you define a normal sum function:
def calc_sum(lst): return sum(lst) print(calc_sum([1,2,3,4])) # Out:10 def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum f = calc_sum([1, 2, 3, 4]) print(f) # 代码并没有对函数进行执行计算出结果,而是返回函数,所以打印出来的是类型 #Out: <function calc_sum.<locals>.lazy_sum at 0x000001FF43462E18> print(f()) # 对返回的函数进行调用时,才计算出结果 # Out:10
The above is the detailed content of Introduction to 5 commonly used built-in higher-order functions in Python (with code). For more information, please follow other related articles on the PHP Chinese website!

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
