search

Introduction to file types under Linux

Feb 26, 2019 pm 04:16 PM
linuxfile type

The content of this article is to introduce several file types under Linux. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you. [Video tutorial recommendation: Linux tutorial]

Under the Linux system, there are seven types of files:

  • Ordinary files (- )

  • ##Directory (d)


  • soft link (character link L)


  • Socket File(S)


  • Character Device(S)


  • Block Equipment (B)


  • Pipe file (named pipe P)

Ordinary files, directories, and soft links require no further explanation. Let's take a look at pipe files, socket files, character devices, and block device types.

Pipe file

Pipes are divided into

anonymous pipes and named pipes. Pipes are written at one end and read at the other end. They are one-way data transmission, and their data are transmitted directly in memory. Pipes are a way of inter-process communication, such as parent process writing and child process reading. .

In the shell, the anonymous pipe is a pipe symbol "|", such as

ls | grep xxx, where the process corresponding to ls is the parent process in this independent process group, and the process corresponding to grep It is a child process. The parent process writes and the child process reads.

In programming languages, anonymous pipes are implemented by creating two file handles or file descriptors (such as A, B). One file handle is used to write data (such as A writing end, data writing end Entering A will automatically push it into B), and another file handle is used to read data (i.e. B).

For named pipes, that is, named pipes, named pipes keep files in the file system. It is also called FIFO, which means first in first out. Although the named pipe file is retained in the file system, this file is only an entry point for using the named pipe. When using the named pipe to transmit data, it is still performed in memory, which means that it will not be retained on the file system. Named pipes are less efficient.

In the shell, you can use the

mknod command or the mkfifo command to create a named pipe. Named pipes are very useful when writing shell scripts with certain special needs. In fact, the function of coroutines (using the coproc command) has been supported since Bash 4 (ksh and zsh have long supported coroutines), but the needs of coroutines can be realized through named pipes.

General pipelines are one-way communication and cannot realize the function of two-way communication, that is, they can only write and read at the same time, but cannot read and write on both sides. If you want to achieve two-way communication, you can create two pipes (so there are 4 file handles, two reading ends, and two writing ends), or use a more convenient socket.

Socket

Socket is used to realize communication between both ends. As analyzed above, it can realize the inter-process communication function of bidirectional pipeline. Not only that, sockets can also realize inter-process communication across hosts through the network.

Sockets need to be paired to be meaningful, that is, they are divided into two ends. Each end has a file descriptor (or file handle) for reading and writing, which is equivalent to two two-way communication pipes.

Sockets are divided into two categories according to the protocol family: network sockets (AF_INET type, divided into inet4 and inet6 according to ipv4 and ipv6) and Unix Domain sockets (AF_UNIX type). Of course, from the protocol family down, sockets can be subdivided into many types. For example, INET sockets can be divided into TCP sockets, UDP sockets, link layer sockets, Raw sockets, etc. . Among them, network sockets are the foundation and core of network programming.

Unix Domain Socket

For stand-alone inter-process communication, it is better to use Unix Domain socket than Inet socket, because Unix Domain socket has no network communication component, and It just lacks a lot of network functions and is more lightweight. In fact, the pipeline functions implemented by some languages ​​on certain operating system platforms are implemented through Unix Domain, and one can imagine its high efficiency.

Unix Domain socket has two file handles (such as A, B). Both file handles are readable and writable at the same time. When process 1 writes data to A, it will be automatically pushed to B. Process 2 can read the data written from A from B. Similarly, when process 2 writes data to B, it will be automatically pushed to A. Process 1 can Read the data written from B from A. As follows:

进程1            进程2
------------------------
A   ----------->  B
B   ----------->  A
In the programming language, creating a Unix Domain Socket naturally has corresponding functions to easily create it (can

man socketpair). For bash shell, you can create it through the nc command (NetCat), or simply use two named pipes to implement the corresponding functions. If necessary, you can learn how to use Unix Domain sockets in the bash shell.

Network Sockets

For inter-process communication across a network, network sockets are required. Every network socket is made up of 5 parts, which are called the socket’s 5-tuple. The format is as follows:

{protocol, src_addr, src_port, dest_addr, dest_port}
That is, protocol, source address, source port, destination address, and destination port.

Each end of the socket has two buffers in the kernel space (that is, a pair of sockets has 4 buffers), and each end has recv buffer and send buffer. Process 1 writes data to the send buffer of its own socket, which will be sent to the peer's recv buffer, and then process 2 of the peer can read data from the recv buffer, and vice versa.

But before you can actually read and write the network socket, the network socket still needs some settings. After the server socket is created (socket() function, there will be a file handle or file descriptor for reading and writing operations), it must also bind the address (through the bind() function) and the listening port (through listen () function), the client only needs to create the socket and directly use the connect() function to initiate a connection request to the server socket.

For TCP sockets, when the client initiates a connection request, it means that it needs to perform a three-way handshake with the server (completed by the kernel and has nothing to do with the user space process). Break down each of these three handshakes. The first time the client sends a SYN request, after the server receives the SYN, the kernel puts the connection into the syn queue and sets the status to syn-recv, and then sends ack syn to the client. On the other side, after receiving the client's reply ack, the kernel moves the connection from the syn queue to the established queue (or accept queue) and marks the connection's status as established. Finally, the process waiting for user space initiates the accept() system call to let the kernel remove it from the accept queue. The connection after being accepted() indicates that the connection has been established, which can truly realize data transmission between the processes at both ends.

For more about the principles of TCP sockets, see my other article: The must-know socket and TCP connection process.

Block devices and character devices

Block devices are hardware devices that are distinguished by random (not necessarily sequential) access to fixed-size chunks of data. A fixed-size chunk is called a block. The most common block device is the hard disk, but many other block devices also exist, such as floppy drives, Blu-ray readers, and flash memory. Note that these are devices on which file systems are mounted, and file systems are like a lingua franca for block devices.

Character devices are accessed through a continuous stream of data, byte after byte. Typical character devices are terminals (there are many types of terminals, both physical and virtual) and keyboard.

The easiest way to distinguish block devices and character devices is to look at the way data is accessed. Block devices can be accessed randomly to obtain data, and character devices must be accessed in byte order .

If you can read a little data here, read a little data there, and finally string it into a continuous piece of data, then this is a block device. Just like the data on the hard disk is discontinuous, it may need to be accessed through random access. method to obtain a piece of data. For example, in a slightly larger file on a disk, the first 10k data may be in contiguous data blocks or in contiguous sectors, and the next 10k data may be far away from it or even on different cylinders.

If each byte in a piece of data is in the same byte order as when accessed, that is, the byte order is completely consistent from the time of access to the final processing of the data, then This is a character device. In other words, character devices can be thought of as stream devices. Just like inputting data on a keyboard, if two keys are pressed continuously, when the byte data corresponding to these two keys is received, they must be typed first in the front and then in the back. In the same way, the terminal device works the same way. When the program outputs data to the terminal, the program first outputs the letter a and then the number 3. Then when displayed on the terminal, a must be in front and 3 in the back.

The above is the detailed content of Introduction to file types under Linux. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:博客园. If there is any infringement, please contact admin@php.cn delete
How Debian improves Hadoop data processing speedHow Debian improves Hadoop data processing speedApr 13, 2025 am 11:54 AM

This article discusses how to improve Hadoop data processing efficiency on Debian systems. Optimization strategies cover hardware upgrades, operating system parameter adjustments, Hadoop configuration modifications, and the use of efficient algorithms and tools. 1. Hardware resource strengthening ensures that all nodes have consistent hardware configurations, especially paying attention to CPU, memory and network equipment performance. Choosing high-performance hardware components is essential to improve overall processing speed. 2. Operating system tunes file descriptors and network connections: Modify the /etc/security/limits.conf file to increase the upper limit of file descriptors and network connections allowed to be opened at the same time by the system. JVM parameter adjustment: Adjust in hadoop-env.sh file

How to learn Debian syslogHow to learn Debian syslogApr 13, 2025 am 11:51 AM

This guide will guide you to learn how to use Syslog in Debian systems. Syslog is a key service in Linux systems for logging system and application log messages. It helps administrators monitor and analyze system activity to quickly identify and resolve problems. 1. Basic knowledge of Syslog The core functions of Syslog include: centrally collecting and managing log messages; supporting multiple log output formats and target locations (such as files or networks); providing real-time log viewing and filtering functions. 2. Install and configure Syslog (using Rsyslog) The Debian system uses Rsyslog by default. You can install it with the following command: sudoaptupdatesud

How to choose Hadoop version in DebianHow to choose Hadoop version in DebianApr 13, 2025 am 11:48 AM

When choosing a Hadoop version suitable for Debian system, the following key factors need to be considered: 1. Stability and long-term support: For users who pursue stability and security, it is recommended to choose a Debian stable version, such as Debian11 (Bullseye). This version has been fully tested and has a support cycle of up to five years, which can ensure the stable operation of the system. 2. Package update speed: If you need to use the latest Hadoop features and features, you can consider Debian's unstable version (Sid). However, it should be noted that unstable versions may have compatibility issues and stability risks. 3. Community support and resources: Debian has huge community support, which can provide rich documentation and

TigerVNC share file method on DebianTigerVNC share file method on DebianApr 13, 2025 am 11:45 AM

This article describes how to use TigerVNC to share files on Debian systems. You need to install the TigerVNC server first and then configure it. 1. Install the TigerVNC server and open the terminal. Update the software package list: sudoaptupdate to install TigerVNC server: sudoaptinstalltigervnc-standalone-servertigervnc-common 2. Configure TigerVNC server to set VNC server password: vncpasswd Start VNC server: vncserver:1-localhostno

Debian mail server firewall configuration tipsDebian mail server firewall configuration tipsApr 13, 2025 am 11:42 AM

Configuring a Debian mail server's firewall is an important step in ensuring server security. The following are several commonly used firewall configuration methods, including the use of iptables and firewalld. Use iptables to configure firewall to install iptables (if not already installed): sudoapt-getupdatesudoapt-getinstalliptablesView current iptables rules: sudoiptables-L configuration

Debian mail server SSL certificate installation methodDebian mail server SSL certificate installation methodApr 13, 2025 am 11:39 AM

The steps to install an SSL certificate on the Debian mail server are as follows: 1. Install the OpenSSL toolkit First, make sure that the OpenSSL toolkit is already installed on your system. If not installed, you can use the following command to install: sudoapt-getupdatesudoapt-getinstallopenssl2. Generate private key and certificate request Next, use OpenSSL to generate a 2048-bit RSA private key and a certificate request (CSR): openss

Debian mail server virtual host configuration methodDebian mail server virtual host configuration methodApr 13, 2025 am 11:36 AM

Configuring a virtual host for mail servers on a Debian system usually involves installing and configuring mail server software (such as Postfix, Exim, etc.) rather than Apache HTTPServer, because Apache is mainly used for web server functions. The following are the basic steps for configuring a mail server virtual host: Install Postfix Mail Server Update System Package: sudoaptupdatesudoaptupgrade Install Postfix: sudoapt

Debian Mail Server DNS Setup GuideDebian Mail Server DNS Setup GuideApr 13, 2025 am 11:33 AM

To configure the DNS settings for the Debian mail server, you can follow these steps: Open the network configuration file: Use a text editor (such as vi or nano) to open the network configuration file /etc/network/interfaces. sudonano/etc/network/interfaces Find network interface configuration: Find the network interface to be modified in the configuration file. Normally, the configuration of the Ethernet interface is located in the ifeth0 block.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.