Home > Article > Backend Development > Introduction to the method of reading custom data for Tensorflow classifier project (code example)
This article brings you an introduction to the method of reading custom data for the Tensorflow classifier project (code example). It has certain reference value. Friends in need can refer to it. , hope it helps you.
Tensorflow classifier project custom data reading
After typing the code of the classifier project according to the demo on the Tensorflow official website, the operation was successful. The result Not bad. But in the end, I still have to train my own data, so I tried to prepare to load custom data. However, fashion_mnist.load_data() only appeared in the demo without a detailed reading process. Then I found some information and explained the reading process. Recorded here.
First mention the modules you need to use:
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Image classifier project, first determine what the resolution of the image you want to process will be, the example here is 30 pixels:
IMG_SIZE_X = 30 IMG_SIZE_Y = 30
Secondly determine the directory of your pictures:
image_path = r'D:\Projects\ImageClassifier\data\set' path = ".\data" # 你也可以使用相对路径的方式 # image_path =os.path.join(path, "set")
The structure under the directory is as follows:
The corresponding label.txt is as follows:
动漫 风景 美女 物语 樱花
Next is connected to labels.txt, as follows:
label_name = "labels.txt" label_path = os.path.join(path, label_name) class_names = np.loadtxt(label_path, type(""))
For the sake of simplicity, numpy's loadtxt function is directly used to load directly.
After that, the image data is officially processed, and the comments are written inside:
re_load = False re_build = False # re_load = True re_build = True data_name = "data.npz" data_path = os.path.join(path, data_name) model_name = "model.h5" model_path = os.path.join(path, model_name) count = 0 # 这里判断是否存在序列化之后的数据,re_load是一个开关,是否强制重新处理,测试用,可以去除。 if not os.path.exists(data_path) or re_load: labels = [] images = [] print('Handle images') # 由于label.txt是和图片防止目录的分类目录一一对应的,即每个子目录的目录名就是labels.txt里的一个label,所以这里可以通过读取class_names的每一项去拼接path后读取 for index, name in enumerate(class_names): # 这里是拼接后的子目录path classpath = os.path.join(image_path, name) # 先判断一下是否是目录 if not os.path.isdir(classpath): continue # limit是测试时候用的这里可以去除 limit = 0 for image_name in os.listdir(classpath): if limit >= max_size: break # 这里是拼接后的待处理的图片path imagepath = os.path.join(classpath, image_name) count = count + 1 limit = limit + 1 # 利用Image打开图片 img = Image.open(imagepath) # 缩放到你最初确定要处理的图片分辨率大小 img = img.resize((IMG_SIZE_X, IMG_SIZE_Y)) # 转为灰度图片,这里彩色通道会干扰结果,并且会加大计算量 img = img.convert("L") # 转为numpy数组 img = np.array(img) # 由(30,30)转为(1,30,30)(即`channels_first`),当然你也可以转换为(30,30,1)(即`channels_last`)但为了之后预览处理后的图片方便这里采用了(1,30,30)的格式存放 img = np.reshape(img, (1, IMG_SIZE_X, IMG_SIZE_Y)) # 这里利用循环生成labels数据,其中存放的实际是class_names中对应元素的索引 labels.append([index]) # 添加到images中,最后统一处理 images.append(img) # 循环中一些状态的输出,可以去除 print("{} class: {} {} limit: {} {}" .format(count, index + 1, class_names[index], limit, imagepath)) # 最后一次性将images和labels都转换成numpy数组 npy_data = np.array(images) npy_labels = np.array(labels) # 处理数据只需要一次,所以我们选择在这里利用numpy自带的方法将处理之后的数据序列化存储 np.savez(data_path, x=npy_data, y=npy_labels) print("Save images by npz") else: # 如果存在序列化号的数据,便直接读取,提高速度 npy_data = np.load(data_path)["x"] npy_labels = np.load(data_path)["y"] print("Load images by npz") image_data = npy_data labels_data = npy_labels
At this point, the processing and preprocessing of the original data has been completed. Only the last step is needed, just like in the demo fashion_mnist.load_data()
The results returned are the same. The code is as follows:
# 最后一步就是将原始数据分成训练数据和测试数据 train_images, test_images, train_labels, test_labels = \ train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
The method of printing relevant information is also attached here:
print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Image Data", image_data.shape)) print("%-28s %-s" % ("Labels Data", labels_data.shape)) print("=================================================================") print('Split train and test data,p=%') print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Train Images", train_images.shape)) print("%-28s %-s" % ("Test Images", test_images.shape)) print("%-28s %-s" % ("Train Labels", train_labels.shape)) print("%-28s %-s" % ("Test Labels", test_labels.shape)) print("=================================================================")
Don’t forget to normalize after that:
print("Normalize images") train_images = train_images / 255.0 test_images = test_images / 255.0
Finally, the method of printing the relevant information is attached: Complete code defining data:
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.layers import * from keras.models import * from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 re_load = False re_build = False # re_load = True re_build = True epochs = 50 batch_size = 5 count = 0 max_size = 2000000000 IMG_SIZE_X = 30 IMG_SIZE_Y = 30 np.random.seed(9277) image_path = r'D:\Projects\ImageClassifier\data\set' path = ".\data" data_name = "data.npz" data_path = os.path.join(path, data_name) model_name = "model.h5" model_path = os.path.join(path, model_name) label_name = "labels.txt" label_path = os.path.join(path, label_name) class_names = np.loadtxt(label_path, type("")) print('Load class names') if not os.path.exists(data_path) or re_load: labels = [] images = [] print('Handle images') for index, name in enumerate(class_names): classpath = os.path.join(image_path, name) if not os.path.isdir(classpath): continue limit = 0 for image_name in os.listdir(classpath): if limit >= max_size: break imagepath = os.path.join(classpath, image_name) count = count + 1 limit = limit + 1 img = Image.open(imagepath) img = img.resize((30, 30)) img = img.convert("L") img = np.array(img) img = np.reshape(img, (1, 30, 30)) # img = skimage.io.imread(imagepath, as_grey=True) # if img.shape[2] != 3: # print("{} shape is {}".format(image_name, img.shape)) # continue # data = transform.resize(img, (IMG_SIZE_X, IMG_SIZE_Y)) labels.append([index]) images.append(img) print("{} class: {} {} limit: {} {}" .format(count, index + 1, class_names[index], limit, imagepath)) npy_data = np.array(images) npy_labels = np.array(labels) np.savez(data_path, x=npy_data, y=npy_labels) print("Save images by npz") else: npy_data = np.load(data_path)["x"] npy_labels = np.load(data_path)["y"] print("Load images by npz") image_data = npy_data labels_data = npy_labels print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Image Data", image_data.shape)) print("%-28s %-s" % ("Labels Data", labels_data.shape)) print("=================================================================") train_images, test_images, train_labels, test_labels = \ train_test_split(image_data, labels_data, test_size=0.2, random_state=6) print('Split train and test data,p=%') print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Train Images", train_images.shape)) print("%-28s %-s" % ("Test Images", test_images.shape)) print("%-28s %-s" % ("Train Labels", train_labels.shape)) print("%-28s %-s" % ("Test Labels", test_labels.shape)) print("=================================================================") # 归一化 # 我们将这些值缩小到 0 到 1 之间,然后将其馈送到神经网络模型。为此,将图像组件的数据类型从整数转换为浮点数,然后除以 255。以下是预处理图像的函数: # 务必要以相同的方式对训练集和测试集进行预处理: print("Normalize images") train_images = train_images / 255.0 test_images = test_images / 255.0
The above is the detailed content of Introduction to the method of reading custom data for Tensorflow classifier project (code example). For more information, please follow other related articles on the PHP Chinese website!