This article brings you a detailed introduction to number in JavaScript. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Statement: Readers are required to have a certain understanding of binary
For JavaScript developers, they have more or less encountered strange phenomena in js processing numbers, such as :
> 0.1 + 0.2 0.30000000000000004 > 0.1 + 1 - 1 0.10000000000000009 > 0.1 * 0.2 0.020000000000000004 > Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
If you want to figure out why these strange phenomena occur, you must first figure out how JavaScript encodes numbers.
1. How does JavaScript encode numbers
Numbers in JavaScript, whether they are integers, decimals, fractions, positive or negative numbers, are all floating point numbers. They are all stored in 8 bytes (64 bits).
A number (such as 12
, 0.12
, -999
) occupies 8 bytes (64 bits) in memory, storage method As follows:
0 - 51
: Fraction part (52 bits)##52 - 62
: Exponent part (11 bits)
63
: Sign bit (1 bit: 0 means the number is positive, 1 means the number is negative)
1.1 Absolute value calculation formula
1: abs = 1.f * 2 ^ (e - 1023) 0 0 3: abs = 0 e = 0, f = 0 4: abs = NaN e = 2047, f > 0 5: abs = ∞ (infinity, 无穷大) e = 2047, f = 0Description:
- This formula is a binary algorithm formula, and the result is expressed in
abs
is represented, the fractional part is represented by
f, and the exponent part is represented by
e 2 ^ (e - 1023)
represents the
e - 1023power of
2- because the fractional part occupies 52 digits, so the
f
The value range is
00...00(48 0s are omitted in the middle) to
11...11(48 1s are omitted in the middle)
- Because the exponent part occupies 11 digits, the value range of
e
is
0(
00000000000) to
2047(
11111111111)
1
Storage method:
1.00 * 2 ^ (1023 - 1023)(
f = 0000..., e = 1023,
...represents 48 zeros)
2
storage method:
1.00 * 2 ^ (1024 - 1023)(
f = 0000..., e = 1024,
...represents 48 0s)
- ##9
storage method:
1.01 * 2 ^ (1025 - 1023)
(f = 0100..., e = 1025
,...
represents 48 zeros) - Storage method of 0.5
:
1.00 * 2 ^ (1022 - 1023)
(f = 0000..., e = 1022
,...
Represents 48 0s) - 0.625
storage method:
1.01 * 2 ^ (1021 - 1023)
(f = 0100 ..., e = 1021
,...
represents 48 zeros) 1.2 The range and boundary of absolute values
It can be seen from the above formula:
1.2.1
0
When0 f = 0, e = 1 to
f = 11...11, e = 2046 (48 1s are omitted in the middle)
That is:
Math.pow(2, -1022) to ~= Math.pow(2, 1024) - 1 (
~= means approximately Equal to)
Among them,
~= Math.pow(2, 1024) - 1
Number.MAX_VALUE, so
js The maximum value that can be represented.
1.2.2
e = 0, f > 0
When
e = 0, f > 0
, the value range is : f = 00...01, e = 0 (48 0s are omitted in the middle) to
f = 11...11, e = 0 (48 1s are omitted in the middle)
That is:
Math.pow(2, -1074)
~= Math.pow(2, -1022)(
~= means approximately equal to)
Among them,
Math.pow(2, -1074)
Number.MIN_VALUE, which
js can The minimum value represented (absolute value).
1.2.3
e = 0, f = 0
only represents a value
0
, but with the sign bit, so there is 0 and
-0.
But in the operation:
> +0 === -0 true1.2.4
e = 2047, f > 0
This only represents one value
NaN
. But in the operation:
> NaN == NaN false > NaN === NaN false1.2.5
e = 2047, f = 0
This only represents one value
∞
(infinity, infinity). In operation:
> Infinity === Infinity true > -Infinity === -Infinity true1.3 The maximum safe value of absolute valueAs can be seen from the above, the maximum value that can be stored in 8 bytes is
Number The value of .MAX_VALUE
is~= Math.pow(2, 1024) - 1.
But this value is not safe: the numbers from
1
Number.MAX_VALUE are not continuous, but discrete.
比如:Number.MAX_VALUE - 1
, Number.MAX_VALUE - 2
等数值都无法用公式得出,就存储不了。
所以这里引出了最大安全值 Number.MAX_SAFE_INTEGER
,也就是从 1
到 Number.MAX_SAFE_INTEGER
中间的数字都是连续的,处在这个范围内的数值计算都是安全的。
当 f = 11...11, e = 1075
(中间省略 48 个 1)时,取得这个值 111...11
(中间省略 48 个 1),即 Math.pow(2, 53) - 1
。
大于 Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1
的数值都是离散的。
比如:Math.pow(2, 53) + 1
, Math.pow(2, 53) + 3
不能用公式得出,无法存储在内存中。
所以才会有文章开头的现象:
> Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
因为 Math.pow(2, 53) + 1
不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数,Math.pow(2, 53)
,然后存储在内存中,这就是失真,即不安全。
1.4 小数的存储方式与计算
小数中,除了满足 m / (2 ^ n)
(m, n
都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。
(注:[2]
表示二进制,^
表示 N 次方)
0.5 = 1 / 2 = [2]0.1 0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
# 0.3 的逼近 0.25 ([2]0.01) <p>从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足 <code>m / (2 ^ n)</code> 的小数)可以直接比较大小,其他的都不能直接比较。</p><pre class="brush:php;toolbar:false">> 0.5 + 0.125 === 0.625 true > 0.1 + 0.2 === 0.3 false
为了安全的比较两个小数,引入 Number.EPSILON [Math.pow(2, -52)]
来比较浮点数。
> Math.abs(0.1 + 0.2 - 0.3) <h3 id="小数最大保留位数">1.5 小数最大保留位数</h3><p><code>js</code> 从内存中读取一个数时,最大保留 <code>17</code> 位有效数字。</p><pre class="brush:php;toolbar:false">> 0.010011001100110011001100110011001100110011001100110011 0.30000000000000000 0.3
> 0.010011001100110011001100110011001100110011001100110010 0.29999999999999993
> 0.010011001100110011001100110011001100110011001100110100 0.30000000000000004
> 0.0000010100011110101110000101000111101011100001010001111100 0.020000000000000004
2. Number 对象中的常量
2.1 Number.EPSILON
表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。
Math.pow(2, -52)
用于浮点数之间安全的比较大小。
2.2 Number.MAX_SAFE_INTEGER
绝对值的最大安全值。
Math.pow(2, 53) - 1
2.3 Number.MAX_VALUE
js
所能表示的最大数值(8 个字节能存储的最大数值)。
~= Math.pow(2, 1024) - 1
2.4 Number.MIN_SAFE_INTEGER
最小安全值(包括符号)。
-(Math.pow(2, 53) - 1)
2.5 Number.MIN_VALUE
js
所能表示的最小数值(绝对值)。
Math.pow(2, -1074)
2.6 Number.NEGATIVE_INFINITY
负无穷大。
-Infinity
2.7 Number.POSITIVE_INFINITY
正无穷大。
+Infinity
2.8 Number.NaN
非数字。
3. 寻找奇怪现象的原因
3.1 为什么 0.1 + 0.2
结果是 0.30000000000000004
与 0.3
的逼近算法类似。
0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1019) 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1020)
0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111 (f = 00110011001100110011001100110011001100110011001100111, e = 1021)
但 f = 00110011001100110011001100110011001100110011001100111
有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:
0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100 (f = 0011001100110011001100110011001100110011001100110100, e = 1021)
js
读取这个数字为 0.30000000000000004
3.2 为什么 Math.pow(2, 53) + 1
结果是 Math.pow(2, 53)
因为 Math.pow(2, 53) + 1
不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。
比这个数小的、最靠近的数:
Math.pow(2, 53) (f = 0000000000000000000000000000000000000000000000000000, e = 1076)
比这个数大的、最靠近的数:
Math.pow(2, 53) + 2 (f = 0000000000000000000000000000000000000000000000000001, e = 1076)
取第一个数:Math.pow(2, 53)
。
所以:
> Math.pow(2, 53) + 1 === Math.pow(2, 53) true
The above is the detailed content of Detailed introduction to number in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

去掉重复并排序的方法:1、使用“Array.from(new Set(arr))”或者“[…new Set(arr)]”语句,去掉数组中的重复元素,返回去重后的新数组;2、利用sort()对去重数组进行排序,语法“去重数组.sort()”。

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于Symbol类型、隐藏属性及全局注册表的相关问题,包括了Symbol类型的描述、Symbol不会隐式转字符串等问题,下面一起来看一下,希望对大家有帮助。

怎么制作文字轮播与图片轮播?大家第一想到的是不是利用js,其实利用纯CSS也能实现文字轮播与图片轮播,下面来看看实现方法,希望对大家有所帮助!

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于对象的构造函数和new操作符,构造函数是所有对象的成员方法中,最早被调用的那个,下面一起来看一下吧,希望对大家有帮助。

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于面向对象的相关问题,包括了属性描述符、数据描述符、存取描述符等等内容,下面一起来看一下,希望对大家有帮助。

方法:1、利用“点击元素对象.unbind("click");”方法,该方法可以移除被选元素的事件处理程序;2、利用“点击元素对象.off("click");”方法,该方法可以移除通过on()方法添加的事件处理程序。

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于BOM操作的相关问题,包括了window对象的常见事件、JavaScript执行机制等等相关内容,下面一起来看一下,希望对大家有帮助。

foreach不是es6的方法。foreach是es3中一个遍历数组的方法,可以调用数组的每个元素,并将元素传给回调函数进行处理,语法“array.forEach(function(当前元素,索引,数组){...})”;该方法不处理空数组。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
