The content of this article is about the usage examples (code) of python multi-process. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Python multi-threading is suitable for IO-intensive scenarios, but in CPU-intensive scenarios, multi-core CPUs cannot be fully utilized. Coroutines are essentially thread-based and cannot fully utilize the advantages of multi-cores.
For computing-intensive scenarios that require the use of multiple processes, python's multiprocessing is very similar to the threading module and supports batch creation of child processes using a process pool.
Create a single Process process (using func)
You only need to instantiate the Process class and pass the function to the target parameter. This is the same as the threading module Very similar, args is the parameter of the function
import os from multiprocessing import Process # 子进程要执行的代码 def task(name): print('run child process %s (%s)...' % (name, os.getpid())) if __name__ == '__main__': print('parent process %s.' % os.getpid()) p = Process(target=task, args=('test',)) p.start() p.join() print('process end.')
- ##Create a single Process process (using class)
import multiprocessing import os from multiprocessing import current_process class Worker(multiprocessing.Process): def run(self): name = current_process().name # 获取当前进程的名称 print('run child process <%s> (%s)' % (name, os.getpid())) print('In %s' % self.name) return if __name__ == '__main__': print('parent process %s.' % os.getpid()) p = Worker() p.start() p.join() print('process end.')* Stop the process terminate() ends the child process, but the resources of the child process cannot be released. This is not recommended because the running status of the child thread is not clear when it ends, and there is a high possibility that the child thread will be terminated at an inappropriate moment. Finish.
import multiprocessing import time def worker(): print('starting worker') time.sleep(0.1) print('finished worker') if __name__ == '__main__': p = multiprocessing.Process(target=worker) print('执行前:', p.is_alive()) p.start() print('执行中:', p.is_alive()) p.terminate() # 发送停止号 print('停止:', p.is_alive()) p.join() print('等待完成:', p.is_alive())
- Create multiple Process processes directly
import multiprocessing def worker(num): print(f'Worker:%s %s', num) return if __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process(target=worker, args=(i,)) jobs.append(p) p.start()
- Use process pool to create multiple processes
Pool can provide a specified number of processes for users to call. When a new request is submitted to the pool, if the pool is not full, a new process will be created to execute the request; but if the pool If the number of processes has reached the specified maximum, the request will wait until a process in the pool ends, and then a new process will be created to handle it.
import os import random import time from multiprocessing import Pool from time import ctime def task(name): print('start task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) print('end task %s runs %0.2f seconds.' % (name, (time.time() - start))) if __name__ == '__main__': print('parent process %s.' % os.getpid()) p = Pool() # 初始化进程池 for i in range(5): p.apply_async(task, args=(i,)) # 追加任务 apply_async 是异步非阻塞的,就是不用等待当前进程执行完毕,随时根据系统调度来进行进程切换。 p.close() p.join() # 等待所有结果执行完毕,会等待所有子进程执行完毕,调用join()之前必须先调用close() print(f'all done at: {ctime()}')If you care about the execution result of each process, you can use the get method to return the result. The code is as follows
import os import random import time from multiprocessing import Pool, current_process from time import ctime def task(name): print('start task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) print('end task %s runs %0.2f seconds.' % (name, (time.time() - start))) return current_process().name + 'done' if __name__ == '__main__': print('parent process %s.' % os.getpid()) result = [] p = Pool() # 初始化进程池 for i in range(5): result.append(p.apply_async(task, args=(i,))) # 追加任务 apply_async 是异步非阻塞的,就是不用等待当前进程执行完毕,随时根据系统调度来进行进程切换。 p.close() p.join() # 等待所有结果执行完毕 for res in result: print(res.get()) # get()函数得出每个返回结果的值 print(f'all done at: {ctime()}')
The above is the detailed content of Python multi-process usage example (code). For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool