本篇文章给大家带来的内容是关于探索Python模块自动搜索路径,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
最近在学习python的C++扩展(pybind11),写完一个扩展模块之后,想要在自己的环境中以后都能自动导入这个模块,而不用手动去添加路径(修改sys.path)应该怎么弄?以前最开始学习Python的时候看过这块内容,然而时间长了总会记忆不清,就再回顾了一遍。
概括来说,Python的自动搜索路径是这样的:
程序的根目录
PYTHONPATH环境变量设置的目录
标准库的目录
任何能够找到的.pth文件的内容
第三方扩展的site-package目录
最终,这五个部分的拼接成为了sys.path,其中第一和第三、第五部分是自动定义的。
根目录(自动)
Python首先在根目录搜索要导入的文件。这个根目录的入口依赖于你怎么运行代码;当你运行一个程序时,这个入口就是程序运行入口(top-level script file)文件所在的目录;当你用交互式窗口期运行代码时,这个入口就是你所在的工作目录。
PYTHONPATH 目录(可配置的)
接下来,python会搜索PYTHONPATH环境变量里列出的所有目录,因为这个搜索在标准库之前,所以要小心不要覆盖一些标准库的同名模块。
标准库目录(自动)
这个没什么好说的,pyton会自动搜寻标准库模块所在的目录。
.pth文件列出的目录(可配置的)
这是用的比较少的一个python特性。它允许用户以每行一个的方式列出搜索路径,它和PYTHONPATH环境变量的不同是会在标准库路径之后搜索;而且它是针对这个python安装的,而不是针对用户的(环境变量会随着用户的不同而不同)。 那么,.pth文件应该放在哪里呢?可以通过以下代码找到.pth文件可以放置的位置:
import site site.getsitepackages()
在我的环境中,输出如下:
['C:\\Python27', 'C:\\Python27\\lib\\site-packages']
Lib/site-package目录(自动)
最后,python会在搜索路径上自动加上site-packages目录,这一般是第三方扩展安装的地方,一般是由distutils工具发布的。
举例说明
讲了这么多,现在我们举个小栗子。我的python环境是windows7 + python 2.7。
1. 首先,我们新建一个环境变量PYTHONPATH,在里面加上目录E:\python_extensions
然后,我们在
C:\Python27
目录下新增一个add.pth文件,里面的内容是:E:\python_extensions2
最后,我们在
E:\python_extensions
和E:\python_extensions2
目录下分别新建模块test.py
和test2.py
,里面都写了一个test
方法。
我们打开交互解释器,结果如下:
可以看到,我们可以直接导入这两个目录下的模块了。查看sys.path:
嗯,这两个路径已经自动加入sys.path变量了。
总结
本文简要回顾了python的自动搜索路径,以及如何配置一些搜索路径以使得python在启动时能够将某些目录加到搜索路径。当然,这些自动搜索路径随着python版本和实现的不同会有细微差别,但对于目前的使用来说已经够了。
The above is the detailed content of Explore Python module automatic search paths. For more information, please follow other related articles on the PHP Chinese website!

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version
Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor