Home >Backend Development >Python Tutorial >In-depth understanding of Pandas in python (code examples)

In-depth understanding of Pandas in python (code examples)

不言
不言Original
2018-08-30 10:20:082209browse

This article brings you an in-depth understanding of Pandas in python (code examples). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.

1. Filter

First create a 6X4 matrix data.

dates = pd.date_range('20180830', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
print(df)

Print:

             A   B   C   D
2018-08-30   0   1   2   3
2018-08-31   4   5   6   7
2018-09-01   8   9  10  11
2018-09-02  12  13  14  15
2018-09-03  16  17  18  19
2018-09-04  20  21  22  23

Simple filtering

If we want to select the data in DataFrame, two ways are described below, they can To achieve the same goal:

print(df['A'])
print(df.A)

"""
2018-08-30     0
2018-08-31     4
2018-09-01     8
2018-09-02    12
2018-09-03    16
2018-09-04    20
Freq: D, Name: A, dtype: int64
"""

To make the selection span multiple rows or columns:

print(df[0:3])
 
"""
            A  B   C   D
2018-08-30  0  1   2   3
2018-08-31  4  5   6   7
2018-09-01  8  9  10  11
"""

print(df['20180830':'20180901'])

"""
            A  B   C   D
2018-08-30  0  1   2   3
2018-08-31  4  5   6   7
2018-09-01  8  9  10  11
"""

If df[3:3] will be an empty object. The latter selects data between the tags 20180830 to 20180901, and includes these two tags .

You can also select via loc, iloc, ix.

Related recommendations:

A brief introduction to using the Pandas library to process big data in Python

Through pandas in Python Detailed explanation of the library's analysis of cdn logs

The above is the detailed content of In-depth understanding of Pandas in python (code examples). For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn