In the following article, we will learn about what unit testing is in python. Learn about python unit testing and what role python unit testing can play in python programming.
Unit testing
Unit testing is used to test the correctness of a module, a function or a class Work.
For example, for the function abs(), we can write the following test cases:
1. Enter a positive number, such as 1, 1.2, 0.99, and expect the return value to be the same as the input;
2. Enter negative numbers, such as -1, -1.2, -0.99, and expect the return value to be opposite to the input;
3. Enter 0, expect to return 0;
4. If you enter a non-numeric type, such as None, [], {}, expect a TypeError to be thrown.
Put the above test cases into a test module, which is a complete unit test.
If the unit test passes, it means that the function we tested can work normally. If the unit test fails, either there is a bug in the function, or the test conditions are entered incorrectly. In short, it needs to be fixed to make the unit test pass.
What is the significance of passing the unit test? If we make modifications to the abs() function code, we only need to run the unit test again. If it passes, it means that our modification will not affect the original behavior of the abs() function. If the test fails, it means that our modification If it is inconsistent with the original behavior, either modify the code or modify the test.
The biggest benefit of this test-driven development model is to ensure that the behavior of a program module conforms to the test cases we designed. When modified in the future, it can be greatly guaranteed that the module behavior will still be correct.
Let’s write a Dict class. This class behaves the same as dict, but can be accessed through attributes. It is used like the following:
>>> d = Dict(a=1, b=2) >>> d['a'] 1 >>> d.a 1
The mydict.py code is as follows:
class Dict(dict): def __init__(self, **kw): super().__init__(**kw) def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(r"'Dict' object has no attribute '%s'" % key) def __setattr__(self, key, value): self[key] = value
In order to write unit tests, we need to introduce the unittest module that comes with Python and write mydict_test.py as follows:
import unittest from mydict import Dict class TestDict(unittest.TestCase): def test_init(self): d = Dict(a=1, b='test') self.assertEqual(d.a, 1) self.assertEqual(d.b, 'test') self.assertTrue(isinstance(d, dict)) def test_key(self): d = Dict() d['key'] = 'value' self.assertEqual(d.key, 'value') def test_attr(self): d = Dict() d.key = 'value' self.assertTrue('key' in d) self.assertEqual(d['key'], 'value') def test_keyerror(self): d = Dict() with self.assertRaises(KeyError): value = d['empty'] def test_attrerror(self): d = Dict() with self.assertRaises(AttributeError): value = d.empty
When writing unit tests, we need to write a test class that inherits from unittest.TestCase .
Methods that begin with test are test methods. Methods that do not begin with test are not considered test methods and will not be executed during testing.
You need to write a test_xxx() method for each type of test. Since unittest.TestCase provides many built-in conditional judgments, we only need to call these methods to assert whether the output is what we expect. The most commonly used assertion is assertEqual():
self.assertEqual(abs(-1), 1) # 断言函数返回的结果与1相等
Another important assertion is to expect an Error of a specified type to be thrown. For example, when accessing a non-existent key through d['empty'], the assertion will throw KeyError:
with self.assertRaises(KeyError): value = d['empty']
When accessing a non-existent key through d.empty, we expect an AttributeError to be thrown:
with self.assertRaises(AttributeError): value = d.empty
Run unit test
Once the unit tests are written, we can run the unit tests. The simplest way to run it is to add two lines of code at the end of mydict_test.py:
if __name__ == '__main__': unittest.main()
这样就可以把mydict_test.py当做正常的python脚本运行:
$ python mydict_test.py
另一种方法是在命令行通过参数-m unittest直接运行单元测试:
$ python -m unittest mydict_test ..... ---------------------------------------------------------------------- Ran 5 tests in 0.000s OK
这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。
以上就是本篇文章所讲述的所有内容,这篇文章主要介绍了python单元测试的相关知识,希望你能借助资料从而理解上述所说的内容。希望我在这片文章所讲述的内容能够对你有所帮助,让你学习python更加轻松。
更多相关知识,请访问php中文网Python教程栏目。
The above is the detailed content of What is python unit testing? (detailed examples). For more information, please follow other related articles on the PHP Chinese website!

随着软件开发的日益复杂化,确保代码质量变得越来越重要。在Yii框架中,单元测试是一种非常强大的工具,可以确保代码的正确性和稳定性。在本文中,我们将深入探讨Yii框架中的单元测试,并介绍如何使用Yii框架进行单元测试。什么是单元测试?单元测试是一种软件测试方法,通常用于测试一个模块、函数或方法的正确性。单元测试通常由开发人员编写,旨在确保代码的正确性和稳定性。

随着软件开发变得越来越复杂,测试也变得越来越重要。在实际开发中,有两种常见的测试方法:单元测试和集成测试。在这篇文章中,我们将聚焦于Go语言中的这两种测试方法。一、单元测试单元测试是一个独立的测试单元,用于测试程序中的逻辑单元,比如函数、方法、类等。这些测试通常由开发人员自己编写,用于验证程序的各个单元是否按照预定的规则工作。在Go语言中,我们可以使用标准库

ThinkPHP是一款非常流行的PHP开发框架,它具有开发效率高、学习成本低、灵活性强等优点。对于一个优秀的开发团队来说,单元测试是保证代码质量的一种必要手段。本篇文章将介绍如何使用ThinkPHP6框架进行单元测试,以提高项目的稳定性和开发效率。一、什么是单元测试?单元测试是指对软件中的最小可测试单元进行检查和验证的一种测试方法。在PHP开发中,单元测试可

在PHP项目开发中,单元测试是一项很重要的任务。PHPUnit和Mockery是两个相当流行的PHP单元测试框架,其中PHPUnit是一个被广泛使用的单元测试工具,而Mockery则是一个专注于提供统一而简洁的API以创建和管理对象Mock的对象模拟工具。通过使用PHPUnit和Mockery,开发人员可以快速高效地进行单元测试,以确保代码库的正确性和稳定性

在Web开发中,PHP是一种流行的语言,因此对于任何人来说,对PHP进行单元测试是一个必须掌握的技能。本文将介绍什么是PHP单元测试以及如何进行PHP单元测试。一、什么是PHP单元测试?PHP单元测试是指测试一个PHP应用程序的最小组成部分,也称为代码单元。这些代码单元可以是方法、类或一组类。PHP单元测试旨在确认每个代码单元都能按预期工作,并且能否正确地与

随着软件开发行业的发展,测试逐渐成为了不可或缺的一部分。而单元测试作为软件测试中最基础的一环,不仅能够提高代码质量,还能够加快开发者开发和维护代码的速度。在PHP领域,PHPUnit是一个非常流行的单元测试框架,它提供了各种功能来帮助我们编写高质量的测试用例。在本文中,我们将介绍如何使用PHPUnit进行PHP单元测试。安装PHPUnit在使用PHPUnit

在软件开发中,测试是一个极其重要的环节。测试不仅可以帮助开发人员找出代码中的错误,还可以提高代码的质量和可维护性。在Go语言中,测试是使用GoTest工具完成的。GoTest支持单元测试和集成测试两种测试方式。在本文中,我们将介绍Go语言中单元测试和集成测试的最佳实践。单元测试单元测试是指对程序中的最小可测试单元进行测试。在Go语言中,一个函数或方法就是

在ThinkPHP6中实现单元测试的最佳实践随着现代软件开发中的快速迭代和高效交付的要求,单元测试已经成为一种不可或缺的自动化测试方法。在PHP语言中,单元测试框架的流行使得开发者不必再手动测试每个函数和方法,而是可以编写测试用例自动化地检查代码的正确性。在ThinkPHP6中,PHPUnit单元测试框架被默认集成进了框架内部,并且具有相当完备的功能和优秀的


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version
